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MARGINAL ASYMPTOTICS FOR THE “LARGE P,
SMALL N” PARADIGM: WITH APPLICATIONS TO
MICROARRAY DATA
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The “large p, small n” paradigm arises in microarray studies, im-
age analysis, high throughput molecular screening, astronomy, and
in many other high dimensional applications. False discovery rate
(FDR) methods are useful for resolving the accompanying multiple
testing problems. In cDNA microarray studies, for example, p-values
may be computed for each of p genes using data from n arrays, where
typically p is in the thousands and n is less than 30. For FDR methods
to be valid in identifying differentially expressed genes, the p-values
for the non-differentially expressed genes must simultaneously have
uniform distributions marginally. While feasible for permutation p-
values, this uniformity is problematic for asymptotic based p-values
since the number of p-values involved goes to infinity and intuition
suggests that at least some of the p-values should behave erratically.
We examine this neglected issue when n is moderately large but p is
almost exponentially large relative to n. We show the somewhat sur-
prising result that, under very general dependency structures and for
both mean and median tests, the p-values are simultaneously valid.
A small simulation study and data analysis are used for illustration.

1. Introduction. The “large p, small n” paradigm [27] arises in mi-
croarray studies, image analysis, high throughput molecular screening, as-
tronomy, and in many other high dimensional applications. Microarrays, in
particular, are capable of monitoring the gene expression of thousands of
genes and have become routine in biomedical research. Microarray studies
of phenotypic variation can lead to a better treatment assignment and so
there has been an increasing demand for novel statistical tools analyzing
such data. Representative recent developments utilize both semiparametric
methods [8, 13, 14, 29] and penalized methods [11, 12].

Although statistical analysis with microarray data has been one of the
most investigated areas, theoretical studies of the relevant asymptotic prop-
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2 M. R. KOSOROK AND S. MA

erties remain rare (for important exceptions to this, see [8, 14, 25]). The
paucity of such research is partly caused by the abnormality of the microar-
ray data structure. For example, with cDNA microarrays, the dimension of
the covariate p (number of genes) is usually much larger than the sample
size n (number of arrays). Typically, data is aggregated across the n arrays
to form test statistics for each of p genes, resulting in large scale multiple
testing. False discovery rate (FDR) methods (see [1]) are used to account
for this multiplicity in order to successfully identify which among thousands
of monitored genes are significantly differentially expressed.

For FDR methods to be valid for identifying differentially expressed genes,
the p-values for the non-differentially expressed genes must simultaneously
have uniform distributions marginally. While this is feasible for permutation
based p-values, it is unclear whether such uniformity holds for p-values based
on asymptotic approximations. For instance, suppose that we wish to use
t-tests for each of the p genes and to compute approximate p-values based
on the normal approximation for simplicity. If the data is not normally dis-
tributed, we would have to rely on the central limit theorem. Unfortunately,
it is unclear whether this will work for all of the tests simultaneously. The
issue is that the number of p-values involved goes to infinity and intuition
suggests that at least some of the p-values should behave erratically. In this
paper, we examine this neglected issue when n is allowed to be moderately
large but p is almost exponentially larger than n. We show the somewhat
surprising result that, under arbitrary dependency structures for both mean
and median tests, the p-values are simultaneously valid.

To further clarify ideas, consider a simple one-sample cDNA microarray
study. Note that this data setting and the following discussions can be eas-
ily extended to incorporate loop designs as in [29]. Studies using Affymetrix
genechip data can be included in the same framework after some modifi-
cation. Denote Y;; and Z;; as the background-corrected log-ratios and log-
intensities (as in [14]), for array ¢ = 1,...,n and gene j = 1,...,p. Consider
the following simplified partial linear model:

(1) Yij = pj + hi(Zij) + e,

where p; are the fixed gene effects, h;(Z;;) are the smooth array-specific
normalization effects (constrained to be mean zero within array) and e;; are
mean zero random errors. The constraints are for model identifiability. For
simplicity of exposition, we have omitted other potentially important terms
in our model, such as possible print-tip effects. We note, however, that the
theory we present in this paper can extend readily to these richer models.
Models similar to (1) have been investigated by [8, 14]. In [14], asymptotic
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ASYMPTOTICS FOR MICROARRAYS 3

properties based on least squares estimation are established assuming fixed
p and n — oo. It is shown that p; and h; can both be consistently estimated
with optimal convergence rates. In [8], partial consistency type asymptotics
are established. It is proved that when n is fixed and p — oo, h; can be con-
sistently estimated by an estimator A;, although p; cannot be consistently
estimated. If we let X;; = pu; + €;; and Xij =Y — iz,-(Zij), the results of [8]
can be restated as max <<, maxi<j<p | Xij — Xij| = op(1). This process of
removing the h; effects is referred to as “normalization,” and the fact that
the uniform difference between Xij and X;; goes to zero means that the
normalization process is consistent. This permits the use of the normalized
array-specific gene effects Xij for inference in place of the true array-specific
gene effects X;;. However, because n is fixed, the permissible inference tools
at the gene level are restricted to exact methods, such as permutation tests.

The goal of our paper is to study normalization and inference when the
number of arrays n — oo slowly while the number of genes p >> n. This
is essentially the asymptotic framework considered in [25] who show that
provided the range of expression levels is bounded, the sample means con-
sistently estimate the mean gene effects uniformly across genes whenever
logp = o(n). We extend the results of [8, 14, 25] in three important ways.
First, uniform consistency results are extended to general empirical distri-
bution functions and sample medians. Second, a precise Brownian bridge
approximation to the empirical distribution function is developed and uti-
lized to establish uniform validity of marginal p-values based on the normal
approximation. In other words, we develop a central limit theorem for the
large p small n setting. Third, these results are further extended to allow for
incorporating the normalization process. We find that the rate requirement
ranges from logp = o(n'/?) to logp = o(n'/?), depending on the choice of
test statistic and the data assumptions.

An important consequence of these results is that approximate p-values
based on normalized gene expression data can be validly applied to FDR
methods for identifying differentially expressed genes. We refer to this kind
of asymptotic regime as “marginal asymptotics” (see also [18]) because the
focus of the inference is at the marginal (gene) level, even though the results
are uniformly valid over all genes. The main conclusion of our paper is
that the marginal asymptotic regime is valid even if the number of genes
increases almost exponentially relative to the number of arrays, i.e., logp =
o(n?) for some v > 0. Qualitatively, this seems to be the correct order of
asymptotics for microarray experiments with a moderate number, say ~ 30,
of replications. The main technical tools we use include maximal inequalities,
a specialized Hungarian construction for the empirical distribution function,
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4 M. R. KOSOROK AND S. MA

and a precise bound on the modulus of continuity of Brownian motion.

In this article, we mainly focus on the simplified “one-sample” design.
Most microarray studies have in fact more complicated designs. However,
they can usually be decomposed and analyzed in the one-sample and/or
two-sample design framework. Consider for example the Apo Al data in [5].
For each chip, the red and green channels are the same genes from differ-
ent samples/conditions. Thus loosely speaking, we have a one-sample study
in the normalization stage, where the outcome is the log-ratio of red over
green intensities. After normalization, genes from two sub-populations are
compared. We then have a two-sample comparison. For more complicated
cDNA study designs, for example the loop design, similar decompositions
can be carried out. For the Affymetrix studies, normalization and statistical
models may differ significantly from those used for cDNA studies. How-
ever, if the gene effects are of greatest interest, then after normalization,
the Affymetrix studies are reasonably close to cDNA studies. Extending the
theoretical results to the two-sample setting is straightforward (see [19]),
and we include a two-sample study of estrogen data in section 5.2 below.

The article is organized as follows. In section 2, we present two discrepancy
measures for assessing p-value accuracy. In section 3, we present the main
results on asymptotic consistency of estimates and p-values for both mean
and median based tests. The impact of normalization is studied in section 4.
In section 5, a small simulation study and data analysis are presented. A
discussion is given in section 6, while proofs are presented in section 7.

2. Assessing p-value consistency. Suppose we have p hypothesis
tests with p-values g(,) = {q1,--.,9p} but only know the estimated p-values
dip) = {41,---,dp}. An important question is how accurate must g, be
in order for inference based on g, to be asymptotically equivalent to in-
ference based on ¢(,)? For this paper, the chief hypothesis testing issue is
controlling the FDR asymptotically in p. To fix ideas, suppose the indices
Jn ={1,...,p} for the hypothesis tests are divided into two groups, Jo, and
Jip, where some null hypotheses hold for all j € Jy, and some alternatives
hold for all j € Jy,. We will assume that g; is uniformly distributed for all
J € Jop and that g; has distribution F} for all j € Jip, where Fy(t) > ¢ for all
t € [0,1] and F} is strictly concave with limy o Fi(t)/t = co. Let Ap = #Jop/p
be the proportion of true null hypotheses, and assume A\, — Ao € (0,1], as
p — 00. Also let Fy(t) = p~! E§:1 1{g; < t}, where 1{A} is the indicator of
A, and assume F,(t) converges uniformly in ¢ to Fo(t) = Aot + (1 — Ao) F1(2).

The estimate of FDR proposed by [23] (see also [10]) for a p-value thresh-
old of ¢t € [0,1] is FDR,(t) = MUt/(F,(t) v (1/p)), where A1) = (1 —
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ASYMPTOTICS FOR MICROARRAYS 5

E,(1)/(1 — 1) is a conservative estimate of Ao, in that A(l) — A, in proba-
bility, where A\g < Ay < 1, and where a V b denotes the maximum of a and
b. The quantity [ is the tuning parameter and is constrained to be in (0, 1)
with decreasing bias as [ gets closer to zero. Because of the upward bias in
(1), if A() is distinctly < 1, then one can be fairly confident that Ao < 1.

We first consider A\g < 1. The asymptotic FDR for the procedure rejecting
all hypotheses corresponding to indices with p; < ¢ is ro(t) = Aot/ (Aot +(1—
A0)Fi(t)). [24] demonstrate that under fairly general dependencies among
the p-values q(,), F,(t) converges to Fy(t), and thus F/lﬁl(t) converges in
probability to r,(t) = (A«/Ao)ro(t). Our assumptions on F; ensure that ro(¢)
is monotone increasing with derivative 7¢(t) bounded by (46)~!. Thus, for
each p € [0, \,], there exists a ¢t € [0,1] with r.(¢) = p and 7¢(¢t) < p. Thus
using ml(t) to control FDR is asymptotically valid, albeit conservative.

Suppose all we have available is §(,). Now we estimate Fp with ﬁ'p(t) =
p1 S 1{g; < t} and A, with \(t) = (1 — E,(1))/(1 — 1). The previous
results will all hold for F/lﬁ?l(t) = AD)t/(E,(t) Vv (1/p)), provided F, is
uniformly consistent for Fy. We now show that a sufficient condition for
this is F15(g(p), 9(p)) = maxi<j<p|gj — g;| — 0 in probability. Under this
condition, there exists a positive sequence €, | 0 such that P(E1,(q(p), 9(p)) >
€p) — 0 in probability. Accordingly, we have with probability tending to one
that for any ¢ € [ep, 1—¢,), Fy(t—€p) < Fy(t) < Fp(t+€,). Thus, by continuity
of Fy, uniform consistency of ﬁ'p follows from uniform consistency of F'p. In
summary, the above procedure for controlling FDR is asymptotically valid
when A\ < 1, provided E1p(q(p),q(p)) goes to zero in probability.

The above result does not hold when Ay = 1. Since this forces A, = 1, we
will have warning whenever A(l) or A(l) is close to 1. The main difficulty is
that ro(¢) = 1 for all ¢ € (0, 1], and thus the previous asymptotic arguments
will not hold. This issue is confronted in [7] who utilize large deviation results
to build on an earlier version of the present paper [19] for controlling FDR
using t-tests and bootstrap calibration. They show that controlling the error
in the p-value ratios, max;<;<p |¢;/q;—1|, is needed. An additional advantage
of controlling the p-value ratios, is that the relative order of significantly
small p-values can be better determined. This is useful, for example, for
prioritizing genes for followup studies.

(

The ratio-error measure we propose is E2g) (dw)> 9p))

max (1{% > o/(2p)} Z_f 1

1<j<p ,

+ 1{g; < a/(2p), §; > a/p}> :

We require Eég) (d(p)>9(p)) — 0, in probability, for all a € (0,1]. This error
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6 M. R. KOSOROK AND S. MA

is not quite as stringent as the uniform ratio-error given in the previous
paragraph, but it is nearly so, as seen in the following simple lemma:

LEMMA 1. Suppose Eéz)((j(p),q(p)) — 0 in probability, as p — oo, for
every a € (0,1]. Then maxjes,, |§;/qj — 1| = 0 in probability, as p — co.

The proof easily follows from the marginal uniformity of ¢; when j € Joy,
since this implies P(minjey,, ¢; < a/(2p)) < Xjes, P(g; < a/(2p)) < /2
and since « can be chosen arbitrarily close to 0.

The Eég) error measure also requires that when ¢; < o/(2p), ¢; must
satisfy the most stringent Bonferoni correction at level o. We now argue
that Egz) (d(p)>9(p)) — O in probability for every a € (0,1] ensures that
controlling FDR using F/DT%l(t) is asymptotically valid.

We need to modify our previous conditions to assume that A\, — 1; that
t9F(t) — oo, as t — 0, for some § € (0,1); and that (1 — \p) "t = o(p* ).
Define FDR;)(t) to be the sequence of true FDRs at significance level ¢,
Gp(t) to be the observed empirical distribution of the p), p-values from
null hypotheses, and let r,)(t) = Apt/(Apt + (1 — Ap)Fi(t)). The second
assumption strengthens the degree of concavity of F} in the left tail, while
the third assumption prevents r(,) from converging to 1 too rapidly. As we
did previously, we will control FDR at the level p by finding a ¢t € (0,1) such
that ﬁl (t) < p and rejecting hypotheses corresponding to estimated p-
values §; for which g; < t. The following lemma tells us when this procedure
will be asymptotically valid for controlling FDR:

LEMMA 2. Fiz p,l € (0,1). In addition to the given conditions, assume

that ng,‘) (d(p)> 9(p)) — O in probability for every a € (0,1], and that

(2) sup [FDRy(t) — (\e/Ao)rgp(t)] = 0 and  sup 72Gy(t) — 1] = 0,

t€[tp,1] te(ty,1]

in probability, where t, = (1 — A\p)Y/ (=9 Let t, = sup{t : @l(fp) < p}
for allp > 1. Then FDR, (tp) V p — p, in probability.

The following lemma provides a sufficient condition for (2):
LEMMA 3. Condition (2) holds when q1,...,qp are independent.

REMARK 1. We now demonstrate that when \o = 1, E1,(q(p),4(p)) — 0
in probability does not in general guarantee asymptotic control of FDR using

FDR,. First note that since Fbﬁ,(t), 7(p)(t) and (1) are uniformly bounded
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ASYMPTOTICS FOR MICROARRAYS 7

almost surely, we have that (2) implies sup,cy, 17 |F DR ) (t) — 7(p)(t)| — 0
by bounded convergence. Assume for illustration that Fi(t) = t1/2 and Ap =
1—p~1/3, and note these satisfy the required assumptions for lemma 2. Fix
p € (0,1), and note that t, = \/p/((l — p)(p*/? — 1)) solves r(y)(tp) = p for
all p large enough. Now pt, — oo but t, — 0. Thus uniform estimation of
ty will not be enough to control FDR at the level p since rp)(t) — 1, as

p — 00, for all t € (0,1]. In particular, we need E1p(4(p), 4(p)) = op(p~/4).

In summary, using F/lﬁ%l (t) to control FDR is asymptotically valid under
reasonable regularity conditions, provided F1,(g(p), q(p)) — 0 in probability

when \g < 1, or Egz) (d(p)> 9(p)) — 0 in probability, for every a € (0, 1], when
Ao = 1. For the remainder of the paper, we will drop the assumptions on the
distributions of the p-values q(;), except that p-values corresponding to null
hypotheses will still be uniform. Our focus hereafter is on conditions under

()

which estimated p-values are uniformly consistent via By, and Ey),".

3. Marginal asymptotics. The results of this section are based on the
true data (without normalization error). For each n > 1, let Xy(ny, ..., Xpn(n)
be a sample of i.i.d. vectors (eg., microarrays) of length p,,, where the depen-
dence within vectors is allowed to be arbitrary. Denote the jth component
(eg-, gene) of the ith vector Xyj(,), i-e., Xin) = (Xi1(n)s - - » Xipa(n))'- Also
let the marginal distribution of Xy(,,) be denoted Fj,), and let Fj(n)(t) =
n iy, 1{Xij(n) <t},forallt € Rand each j =1,...,pp,.

We first establish, in section 3.1, uniform consistency of the marginal em-
pirical distribution function estimator and also uniformity of a Brownian
bridge approximation to the standardized empirical distribution. These re-
sults are used in sections 3.2 and 3.3 to study inferential properties of the
marginal means and medians. Note that both the mean and median are
functionals of the empirical distribution function.

3.1. Consistency of marginal empirical distribution functions. This sec-
tion, consisting of theorems 1 and 2 below, is the basis for the results of
sections 3.2 and 3.3. The two theorems are somewhat surprising, high di-
mensional extensions of two classical univariate results for empirical distri-
bution functions: the celebrated Dvoretsky, Kiefer and Wolfowitz inequal-
ity [6] as refined by Massart [20] and the celebrated Komlés, Major and
Tusnddy Hungarian construction [15] as refined by Bretagnolle and Mas-
sart [3]. The extensions utilize maximal inequalities based on Orlicz norms
(see chapter 2.2 of [26]). For any real random variable Y and any d > 1,
let ||Y]y, denote the Orlicz norm for ¢g(x) = €** — 1, ie, |V]ly, =
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8 M. R. KOSOROK AND S. MA

inf{C’ >0:E [emd/cd - 1} < 1}. Note that || - ||y, increases with d (up
to a constant depending on d) and that || - ||, dominates all L, norms (up
to a constant depending on p). We denote the uniform norm || - [|co-

The first theorem yields simultaneous consistency of all f?’j(n)s:

THEOREM 1. For a universal constant 0 < ¢y < oo and all n,p, > 2,

» logpn
(3) Fj(n)—Fj(n)Hoo H¢ < COVT'

In particular, if n — oo and log p, = o(n), then the left side of (3) — 0.

max
1<j<pn

REMARK 2. The rate on the right-side of (3) is sharp, in the sense that
there exist sequences of data sets, where (log pn/n)~/? x maxi<j<p, | Ejn) —
Fj(n)”oo — ¢ > 0, in probability, as n — oco. In particular, this is true if the
genes are all independent, n, p, — oo with logp, = o(n), and ¢ = 1/2.

The second theorem shows that the standardized empirical processes
\/ﬁ(ﬁ’j(n) — F)j()) can be simultaneously approximated by Brownian bridges
in a manner which preserves the original dependency structure in the data.
For example, if the original data has weak dependence, as defined in [24],
then so will the approximating Brownian bridges. To this end, let Fj,) be
the smallest o-field making all of Xy (), .- ., Xpj(n) measurable, 1 < j < pp,
and let 7, be the smallest o-field making all of Fy(y), ..., Fp, (n) measurable.

THEOREM 2. For universal constants 0 < c1,c3 < o0 and all n,p, > 2,
- c1logn + calogp
(4) VU Fjn) = Fj(n)) = Bj(n)(Fj(n))H < -
1 Vn

for some stochastic processes By, ..., Bp,n) which are conditionally inde-
pendent given F, and for which each Bj, is a standard Brownian bridge
with conditional distribution given F, depending only on Fj), 1 < j < py.

max
1<j<pn

o0 ‘

3.2. Inference for marginal sample means. For each 1 < j < p,, as-
sume for this section that Fj,) has finite mean p;(,) and standard deviation
0j(n) > 0. Let X,y be the sample mean of X ;(,), - - - ; Xy (n)- The following
corollary yields simultaneous consistency of the marginal sample means:

COROLLARY 1. Assume the closure of the support of Fj,) is a compact
interval [aj(n), bj(n)] with @) # bjn)- Under the conditions of theorem 1
and with the same constant cy, we have for all n,p, > 2,

|1og pr
P Tt i) = @i
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ASYMPTOTICS FOR MICROARRAYS 9

REMARK 3. Note that corollary 1 slightly extends the large p small n
consistency results of [25] by allowing the range of the support to increase
with n provided it does not increase too rapidly.

The following corollary relaxes the somewhat restrictive bounded support
assumption at the expense of decreasing the rate of convergence:

COROLLARY 2. Assume that there exist constants 0 < ki,ky < oo and
r > 1 such that P(|X1j(n) — pjemy| > ) < ke ™% for all u > 0 and all
1< j <pn. Then, provided n — oo and p, > 2, we have

logp —
(6) | max X — njem| = Op (\/ 2= (log pn +logn)'/" + (npn) kz) .

In particular, the right-hand-side goes to zero provided log p, = o(n’"/ (2‘”)).

Now suppose we wish to test the marginal null hypothesis Hg(") D lj(n) =
Ho,j(n) with Timny = \/ﬁ(X](n) — Ho,j(n))/&j(n)a where 6'j(n) is a location-
invariant and consistent estimator of o;(,). To use FDR, we need uniformly
consistent estimates of the p-values of these tests. Permutation methods
can be used. An easier way is to use ;) = 2®(—|Tj(n)|), where @ is the
standard normal distribution function, but we need to Show this is valid. For

the estimator J;(,), we require & / j(n) to be uniformly consistent for 1,
ie., By, = max1<j<pn‘ &5(n) /a — 1‘ = op(1). One choice for a( ) that

satisfies this requirement is the sample variance S? i(n) for X1j(n)s -+ Xnj(n):

COROLLARY 3. Assume n — oo, with p, > 2 and log p, = o(n?) for some
€ (0,1]. The following are true under the given assumptions:

(i) Assume the closure of the support of Fj,) is compact as in corollary 1,
and let d, = maxi<j<p, aj];)|bj(n) — aj(n)|. Then Eop = O(n™') +
op(dZnY/2=1/2). In particular, if d, = O(1), then Eg, = 0p(1)

(i) Assume there exists constants 0 < k1, ks < oo such that P( |X1]

| > z) < kie” ka2 forallw>0,1§] < pn, andallnz 1.
Then Eo, = O(n™1) + Op((npp)~*2) + 0p(n®/2-1Y/2). In particular, if
v € (0,1/3], then Ey, = op(1).

This approach leads to uniformly consistent p-values:

COROLLARY 4. Assume as n — oo that p, > 2, logp, = o(n?), for
some v € (0,1/2], and Ey, = op(1l). Then there ezist standard normal
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10 M. R. KOSOROK AND S. MA

random variables Zy(n), - - - , Zp, (n) Which are conditionally independent given
Fn, with each Zjyn) having conditional distribution given Fy, depending only
on Fjn), 1 < j < pn, such that the following hold for m(n) = T1(n), - - Tp,(n)

and T(p) = Ti(n), - - - Tp,(n), Where

. Vi) = Bojj(n)) D , 1<) <pn:
()

j(n ,
gj

(7) 7Tj(n) = 2% (—

a) Provided the support of F;, is bounded as in part (i) of corollary 3:
i(n)

(i)  Eip,(T(n), T(n)) = Op(E'é/2) + op(n""12d,). In particular, the

n
error goes to zero if 02 (n) = Sj(n) and d,, = O(1).
(i) If, in addition, Eo, = Op(n~") and dp, = O(n=3V/2t1/2) then
E’éz) (), T(n)) = 0p(1), for all a« € (0,1]. In particular, the

conditions hold for &2 i) = Sj?(n), d, = O(1), and v € (0,1/3].

(b) Provided the Fj(,) have subGaussian tails as in part (ii) of corollary 3:

(i)  Erp,(Tn), T(n)) = Op(EéT/Lz) + 0p(n®1/2712), In particular, the

error goes to zero if 02 (n) = Sj(n) and v € (0,1/3].

(i) If, in addition, Ey, = Op(n~7) and v € (0,1/4], then Es2) (#t(n),
T(n)) = 0p(1), for all a € (0,1]. In particular, the conditions hold

for &2(n) = Sj?(n) and v € (0,1/5].

J

REMARK 4. Corollary 4 tells us that if we assume bounded ranges of the
distributions and if uniform convergence of p-values is sufficient, then the
approximate p-values are asymptotically valid, provided we use the sample
standard deviation for t-tests and logp, = o(nl/z). If we also need the ratios
of the p-values to be valid, then we need log p, = o(n1/3). If we weaken our
bounded range assumption to only requiring uniformly subGaussian tails,
then the rate requirements for uniform convergence and ratio convergence of
the p-values become logpp, = o(n'/?) and logp, = o(n'/?), respectively.

It has been shown that performance of gene-level p-values can be improved
through assuming homogeneity of variance across genes [9]. If we are willing
to make this assumption, i.e., that 012.(”) = o2 for all 1 < j < p,, then

corollary 4 can be strengthened if we estimate o? with 6% = p,;! >°P», §2 155}

COROLLARY 5. Assume the conditions of part (b it) of corollary 4 are

strengthened to require 0 < 012.( ) = 0% < oo and a( ) = 62,1 <j < pp.
Then Egp, = Op(n~1/2) and Eépi(ﬁ(n),n )) = op(1) for all o € (0,1],

provided v € (0,1/4].
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ASYMPTOTICS FOR MICROARRAYS 11

REMARK 5. This yields a relazation from requiring logp, = o(nl/ %) to
only requiring log p, = o(nl/ 4). The other error rates in corollary 4 do not
appear to benefit from faster convergence of Eyy,.

3.3. Inference for marginal sample medians. Assume each Fj,) has me-
dian ¢j(,) and is continuous in a neighborhood of §;(,) with density fj(,). In
this section, we do not require the support of Fj(,) to be compact, be we do
assume there exist 7,7 > 0 such that

8 min inf () > T

( ) 1<5<Pn @le—Ej (| <n f](n)( ) =

Denote the sample median for Xy, ..., Xnjn) as éj(n), ie., let éj(n) =
inf{z : ﬁ’j(n)(x) > 1/2}. The following gives uniform consistency of fj(n):

COROLLARY 6. Under condition (8) (for some n,7 > 0) and the condi-
tions of theorem 1, we have that

: log(n V pn) log p
9)  max. 1€in) — &)l = Op ( ~ =+ = 2.

Now assume we wish to test the marginal null hypotheses H(])(n) :€j(n) =
€0,j(n) With Ujn) = 2¢/nfjn)(€jn) — €o,j(n))> Where fj) is a consistent es-
timator of f;(,)({j(n))- As discussed in [16], this is a good choice of median
test because it converges rapidly to its limiting Gaussian distribution and
appears to have better moderate sample size performance compared to other
median tests. As with the marginal mean test, we need consistent estimates
of the p-values of these tests. We now study the consistency of the p-value es-
timates fr;.(n) = 2®(—|Uj(n)|)- We need additional conditions. Assume there
exists 7,7 > 0 and M < oo such that (8) holds and, moreover, that

10 max  sup  fim(@) < M and
10) 15 e o < i(n) (@)
(11) max sup sup ‘fj(n)(gj(”) tu) - fi (gj(n))‘

' 172 < M.
1<J<Pn e<n u:ju|<e €

Let E(I)n = maXi<j<p, |f](n) - f](n)(gj(n)” One simple choice for f](n) is

(12) fim = 3(n)\5j(n) n2hn 3(n)\5j(n) n

where the window width h,, goes to zero in probability, as n — oo. The
following corollary shows that this estimator is uniformly consistent:
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12 M. R. KOSOROK AND S. MA

COROLLARY 7. Assume condition (10) holds and that logp, = o(n") for
somey € (0,1], as n — oo. Suppose also that fj(n) = fj(n) foralll < j < py,
hn = op(1) and h,* = Op(n"N/2). Then Ej), = op(h,'n 1-1/2) 4+
Op(h},,/2) = op(1). In particular, the selection h, = Op(n~(1=1/4) and
hit = Op(n®="/2%) yields Ej), = Op(n=(1=7)/8) while the choice h, =
Op(n=(="/3) and h;' = Op(n(="/3) yields a further improvement to
Ey, = Op(n=(1=7)/6),

There are many other possible kernel estimators, with other choices of
window widths, that will also work, but we will not pursue them here.
We are now ready for the following corollary about p-value consistency:

COROLLARY 8. Assume as n — oo that p, > 2, logp, = o(n?), for
some v € (0,1/3], and Ey,, = op(1). Assume also that conditions (8), (10)
and (11), for some n,7 > 0 and M < oo, hold. Then

(13) Elpn(ﬁ}(n),w}(n)) = op(l), where
(14) Timy = 2@ (— !Zj(n) +2v1fi(n) (i (n)) i) — 'fO,j(n))D ;
and, for each n > 1, Zy(n),..-,Zp,(n) are standard normals conditionally

independent given Fy, and for which each Zjy) has conditional distribution
gwen Fy depending only on Fjpy, 1 < j < pn. In particular, (13) holds if
fj(n) = fj(n) for all 1 < j < pn, hy = op(1) and k' = Op(n(t=7)/2),
If, moreover, we require v € (0,1/5], h, = Op(n=(U=1/4) and hl =
Op(nS1=1/24) then Eég,)l(ﬁfn)’”fn)) = op(1), for every a € (0,1].

REMARK 6. It is unclear if any improvements in the choice of v are
possible through combining information across genes (1 < j < p,) as was
done in corollary 5 for the mean inference setting.

4. Impact of microarray normalization. In this section, we con-
sider the affect of normalization on the theory presented in sections 2—-3. For
the simple normalization model (1), this may require the h;s to be uniformly
consistent at the rate Op(n? logn), for some 8 € [1/2,1). This requirement
seems reasonable for certain estimation methods, including the method de-
scribed in [8], which benefit from the so-called “blessing of dimensionality”.
In these methods, data across all genes within each array are utilized for
estimating the h;s. Since the number of genes p, usually increases nearly
exponentially relative to the number of microarrays, the number of obser-
vations available for estimating the h;s is many orders of magnitude higher
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ASYMPTOTICS FOR MICROARRAYS 13

than n, even after taking into account dependencies within arrays and the
fact that the number of arrays is increasing in n. For this particular facet
of our problem, the large number of genes actually works in our favor. A
variant of this argument can also be found in [18].

Let X',-(n) = (X'ﬂ(n), e ,X',-pn (n))’ be an approximation of the “true data”
Xz(n)a 1< < n, and define én = MaX1<j<py,;1<i<n |Xz_7(n) - ij(n)‘ With
proper, partially consistent normalization, the true gene effects {X,-j(n), 1<
J < pn,1 < i < n} should be uniformly consistently estimated by the
residuals from the normalization {X',-j(n), 1<j<pnl<i<n} Wenow
examine conditions under which the results of sections 3.2 and 3.3 carry
through after normalization, i.e., after €, = op(1).

4.1. Inference for marginal sample means. Let Xj(n) and 5’]2(”) be the

sample mean and variance for the normalized sample le(n)a cee an(n).

S;(n) / S]?(n) - 1‘ and assume throughout this sec-
tion that minj<j<p, 0jn) > 7 > 0 for all n > 1. We have the following:

Define Ey, = maxi<j<p,

LEMMA 4. (a) maxi<j<p, |X]~(n) — Xj(n)| = Op(&,)-
(b) Assume n — oo, with p, > 2 and logp, = o(nY) for some y € (0,1]:
(i) If the support of Fj, is bounded and d,, = O(1), Eo, = Op(&,).
(ii) If the suvaaussian tail hypothesis of corollary 3 holds and v €
(0,1/3], Eon = Op(&).

The above leads to the following result. Define first #(,,) = 71(n); - - - s Tpp (n) s
where () = 28(—|T} 1), T} () = VP Xjn) = Ho,j(n))/Si(n)> 1 < J < pn-

COROLLARY 9. Assume the conditions of corollary 4. Then:

(a) Provided the support of Fju) is bounded and d, = O(1), we have
(i) Bip, (> 7)) = 0p(1) when én = op(n="/2); and (i4) By (), ) =
op(1), for all o € (0,1], when v € (0,1/3] and &, = Op(n~1/277/2),

(b) Provided Fj;) has subGaussian tails as in part (b) of corollary 4,
we have (i) Eip, (7t(n), T(n)) = op(1) when v € (0,1/3] and &, =
op(n~12); and (i) Eézi(ﬁ(n),ﬁ(n)) = op(1), for all a € (0,1], when
v € (0,1/5] and &, = Op(n~1/2-7/2),

REMARK 7. Provided é, = Op(n~—'/?) and utilizing arguments similar to
&2 2 _
Sl 73y — 1| =

Op(nfl/z) under the assumption of common wvariances. This means that

those used in corollary 5, lemma 4 yields that maxi<j<p,
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14 M. R. KOSOROK AND S. MA

the requirement that logp, = o(n'/®) can be relazed to log p, = o(n'/*) for
achieving uniform consistency of p-value ratios under subGaussian tails, as
discussed in remark 5, even in the presence of normalization.

4.2. Inference for marginal sample medians. The effect of normalization
on medians is trickier than its effect on means. The essence of our argu-
ment involves an assessment of how well Fj,(t) = n~' Y1y 1{X;;() <t}
approximates Fj(,)(t). We need the following strengthening of (10):

. . < v
(15) limsup max |fim)lleo < M,

for some M < oo. The result below requires a precise bound on the modulus
of continuity of Brownian motion (see lemma 10 in section 7 below):

THEOREM 3. Assume condition (15) holds for some M < oo and that
log pn, = o(n?) for some v € (0,1]. Then the following are true:

(Z) If én = Op(l), then maxi<j<p, F](n) - F](H)H = Op(l),‘
o
(i) If, in addition, v € (0,1/2] and n'~7(logn)é, = Op(1), then also

Fjy — B

j(n ji(n) Hoo = OP(n_(l_’Y))'

max
1<j<pn

REMARK 8. Note that the signed rank test R;y,) studied in [18] can be
written as a normalization of \/n [p [ﬁ’j(n) (u) — ﬁ’j(n)(—u)] dﬁj(n)(u), while
the sign test can be written as a normalization of \/n [p sz'gn(u)dﬁ’j(n) (u).

Thus part (i3) of theorem 8 allows us to replace ﬁ’j(n) with Fjy) in both of
these statistics, 1 < j < pp, without destroying simultaneous consistency and
validity of the normal p-value approrimation assured by theorems 1 and 2.

We now show that theorem 3 can also be used to verify that the asymp-
totic results for the median tests of section 3.3 hold for normalized data.
For j = 1,...,pn, define the approximate sample median &;(,) = inf{r :

Fymy(r) = 1/2} and fin) = (EjmEiom) + hn) = Fjn) i) — b)) /(21n).
Corollaries 10 and 11 validate the median approach after normalization:

COROLLARY 10. Assume there are no ties in the normalized data {Xij(n)}:

&im —&itm| =

(i) Under the conditions of theorem 8, part (i), maxi<j<p,
OP(l);
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ASYMPTOTICS FOR MICROARRAYS 15

(ii)) Assume the conditions of theorem 3, part (ii), but with v € (0,1/3].
Ei(n) — fj(n)‘ = op(n~31=N/);
(13i) zilssume in addition the conditions of corollary 7 with fj(n) replacing

Fitn)- Then maxi<j<p, |fin) — fim)| = op(hytn=30-1/4),

Then maxij <j<pn

COROLLARY 11. Assume the conditions of corollary 10, part (iii), and

)

replaces 71';-(”), for all 1 < j < py. Assume also that n'~7(logn)é, = Op(1)

the conditions of corollary 8, except fr;.(n) =29 (—2\/ﬁfj(n) ‘Ej(n) = £0,j(n)

in all cases. Then all of the conclusions of corollary 8 follow with 7?2”) =
7?’1(n), .. ’frzlzn(n) replacing ﬁ(n).

REMARK 9. Note that we require in some instances that €, converges to
zero faster than Op(nfl/z). This is possible since we can borrow strength
across the p, >> n genes to increase the normalization precision. We have
thus shown that the normal approzimation for p-values, even after normal-
ization, can yield asymptotically valid FDR control as discussed in section 2.

5. Numerical studies.

5.1. One-sample simulation study. We used a small simulation study to
assess the finite sample performance of the following one-sample methodolo-
gies: (1) the mean based comparison with unpooled variance estimate; (2)
the mean based comparison with pooled variance estimate; (3) the median
based comparison and (4) the signed rank test approach. We set the number
of genes to p = 2000 and the number of arrays to n = 10, 50 and 100. For sim-
plicity, we assume the genes are independently distributed and the first 200
genes are differentially expressed. We consider the following marginal gene
expression distributions: Models 1 and 3: Uniform[—+/3v+1.5,1/3v+1.5] for
differentially expressed genes and Uniform[—+/3v,/3v] otherwise. Models 2
and 4: N(1.5,v) for differentially expressed genes and N(0.0,v) otherwise.
In Models 1 and 2, v = 1.0; In Models 3 and 4, v ~Uniform[0.25,1.75]
and marginal variances differ as much as seven-fold. Genes with marginal
p-values < 0.001 are classified as differentially expressed. We compute FDR
using the method in section 2. For simpli%we fix I = 0.2. We show in
Table 1 the medians of the true FDR and F DR based on 200 replicates.

As sample size increases, the estimated FDRs become closer to the true
FDRs for models 1 and 2. For the pooled mean, median and signed rank ap-
proaches, the approach discussed in section 2 provides a conservative control
of the true FDR. For extremely small sample size (n = 10), the pooled mean
approach is still valid; whereas the signed rank approach cannot identify any

imsart-aos ver. 2006/01/04 file: asy-7single.tex date: October 5, 2006



16 M. R. KOSOROK AND S. MA

TABLE 1
One sample simulation study results for the mean, pooled mean, median and signed rank
statistics under models 1, 2, & and 4. n: sample size.

Mean Pooled Mean Median Signed rank
n FDR FDR FDR FDR FDR FDR FDR FDR
Model 1

10 0.113 0.008 0.006 0.010 0.190 0.035 NA NA

50 0.019 0.009 0.009 0.009 0.008 0.009 0.000 0.010

100 0.012 0.009 0.007 0.009 0.009 0.012 0.000 0.010
Model 2

10 0.086 0.009 0.010 0.010 0.048 0.027 NA NA

50 0.016 0.009 0.009 0.009 0.001 0.010 0.000 0.010

100 0.012 0.009 0.009 0.009 0.001 0.010 0.000 0.010
Model 3

10 0.123 0.009 0.016 0.010 0.143 0.027 NA NA

50 0.020 0.009 0.024 0.009 0.005 0.009 0.000 0.010

100 0.015 0.009 0.029 0.009 0.012 0.009 0.000 0.010
Model 4

10 0.090 0.009 0.026 0.010 0.040 0.022 NA NA

50 0.015 0.009 0.024 0.009 0.000 0.010 0.000 0.010

100 0.010 0.009 0.024 0.009 0.000 0.010 0.000 0.010

differentially expressed genes (denoted “NA” in Table 1). For the mean test
without pooling, controlling the FDR with the approach given in section 2
does not work well for small samples (especially under models 2 and 3).
As expected, pooling does not work when the variances are homogeneous
(models 3 and 4). With the ongoing development of microarray technology,
a typical study may have more than 50 arrays. Thus FDR control based on
the mean, pooled mean (when pooling is justified), median and rank ap-
proaches will often be valid. Simulations with correlated expression levels
and other marginal distributions yield similar conclusions.

We show in Figure 1 the histogram of the marginal p-values for a single
replication from model 1 with n = 50. For the mean, pooled mean and
median approaches, the distributions seem to be a mixture of a uniform and
a point mass at zero; the marginal p-value distribution for non-differentially
expressed genes for the rank approach is also close to uniform. With the
rank approach, the proportion of non-differentially expressed genes is over-
estimated. Other diagnostics show that the FDR, approach is well behaved.

5.2. Estrogen data. These datasets were first presented by [28] and [22].
Their common expression matrix monitors 7129 genes in 49 breast tumor
samples. The data were obtained by applying the Affymetrix gene chip tech-
nology. The response describes the lymph nodal (LN) status, an indicator
of disease severity. 25 samples are positive and 24 samples are negative.
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Fic 1. Simulation study: plots of marginal p-values. The solid horizontal line is the true
proportion of non-differentially expressed genes; the dotted line is the estimate.
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18 M. R. KOSOROK AND S. MA

The goal is to identify genes differentially expressed between positive and
negative samples from the 3332 genes passing the first step of processing de-
scribed in [5]. A base 2 log transform of the gene expressions is first applied.
We compute marginal p-values based on the mean (without pooling), pooled
mean, median approaches and the Wilcoxon test, which is a two-sample ver-
sion of the signed rank test. See [19] for additional details on the two-sample
methods. We use [ = 0.2 for tuning and genes with p-values < 0.001 are con-
sidered differentially expressed. With the four approaches, 196 (0.012), 237
(0.011), 68 (0.040) and 156 (0.016) genes are identified, respectively, with the
numbers in “()” being the estimated FDRs. There are reasonable overlaps
between the genes identified with the different approaches.

6. Discussion. The main results of this paper are that marginal (gene
specific) estimates and asymptotic-based p-values are uniformly consistent
in normalized microarray experiments with n replications—regardless of
the dependencies between genes—provided the number of genes p,, satis-
fies logp, = o(n”), for a suitable v € (0,1], depending on the setting. In
other words, the number of genes can increase almost exponentially fast
relative to the number of arrays. This seems to be realistic for microarray
studies. Note that p,, can be even larger for certain distribution free statistics
(see [18]). These results also hold for two-sample comparisons (see [19]).

We note that the numerical studies seem to support the theoretical re-
sults of the paper, although some procedures work better than others. For
certain statistics, the required sample sizes are too large to be practical
without pooling or some other method of borrowing strength across genes
(see [9]). We acknowledge that a number of other issues, such as the affects
of marginal distributions and normalization, were not evaluated in section 5.
A more thorough simulation study addressing these points would be useful.
A theoretical limitation is that the asymptotics developed are not yet accu-
rate enough to provide precise guidelines on sample size. This pursuit will
likely require some assumptions on the dependencies between genes. Such
assumptions are out of place in the present paper since a strength of the pa-
per is the absence of assumptions on gene interdependence. Because of this
generality, the results of this paper should be a useful point of departure for
future, more refined asymptotic analyses of microarray experiments.

7. Proofs. Proof of lemma 2. Since Eéz) (dp)>9(p)) — O in probability
for every a € (0,1], there exist decreasing sequences 0 < ayp,€, | 0 with

limsup,_, o0 P(Ee” (d(p)» d(p)) > €) = 0 and limsup,_,o, P(IND)/A() 1] >
ep) = 0. Thus 1{g; < #(1 — &)} < 1{g; < ¢} < 1{g; < #(1 + &)} for all
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t € [2tp,1] and all 1 < j < p, with large probability. Hence also

o~ B 1 — € — —_—~— ]_ + €
FDR(t(1+ ep(t)))Tgé’t) < FDR(t) < FDRi(t(1-¢))7— 6”,
P P

for all n large enough, where &,(t) = ¢, A (¢! — 1). Hence by condition (2),
(16) sup ‘FDRl(t) - r(p)(t)‘ < sup \r(,,) (t(1+ &(t))) — rp(t(1 - e,,))\
t€[2tp,1] t€[2tp,1]
+ Op(l).

Note that for any g : [0,1] + [0,1] with derivative ¢, we have for all
t € [0,1] and € € (=1,1 A (t7' — 1)), that |g(t(1 + €)) — g(t)| < (1 —
e)~t Supycio,1] [t9(t)|- Applying this to t — 7(,)(t), with derivative 7(,), we
obtain that the right-side of (16) = op(1), provided [t (,)(t)| is uniformly
bounded over all ¢ € [0,1] and p > 1. The provision holds since 0 < Fi(t) —
tfi1(t) < Fi(t) by concavity of Fy, where f; is the derivative of Fy, and thus
by (8) = Mpt(1 — A)(FL(2) — ££:(8) (ot + (1 — A Fi(8)) > < 1/4.

Now note that for any p > 2, r(,) is strictly increasing, r(,)(1) = 1, and

-1
(1= X,)F1(2ty)
(17) T(p)(ztp) = <1 + /\Z2tp P — 0,
since Fi(2p!)/(2p')? — oo by assumption and t;(l_d) = (1-X)"L

Next note that the sequence of solutions t; of r(,)(t;) = Aop/A« is unique
and satisfies 2¢, < t; < 1 for all p large enough. These facts, combined
with the fact that (16) = op(1), now force both fDT%l(2tp) = op(1) and
ﬁl(t;) = p+op(1). This now implies, with probability tending to 1, that
t, > 2t, for all p large enough. Hence T(p) (tp) V (Mo/A)p = (Mo/As)p+o0p(1),
and we are done since sup;cr; 17 [FDR(p)(t) — r(p)(t)| — 0 via remark 1.00
Proof of lemma 3. Let ﬁ’lp be the empirical distribution function of the p-
values associated with alternative hypotheses. Then (2) will follow provided
SUPtelt,,1] |t_1Gp(t) — 1] = op(1) and SUDtelt,,1] |F1p(t)/Fi(t) — 1| = op(1).
This holds by lemma 5 below since pt, — oo and pFi(tp) — 00, as p — co0.0

LEMMA 5. Let Xq,...,X, be i.i.d. with continuous distribution F with
support on [0,1]. Let F,, be the empirical distribution, and let {u,} € [0,1]
satisfy nF(up) — 0o. Then supyey, 1] [Fn(u)/F(u) — 1| = op(1).

Proof. By the continuity of F', we can assume that F(u) = u without loss
of generality since F(X) is uniform. Let s, = nuy /2, and note that

P(nFy,(uy) > s,) =P (nFn(Un) — Uy $n — nu”)

Ny, Ny,
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20 M. R. KOSOROK AND S. MA

— 1, as n — oo, since (s, — nuy)/ /N, — oo and (nug) "2 (nE, (up) —
nu,) = Op(1). Thus SUPy¢[un,1] | B (u)/u—1| < SUD,, ¢ 0,1]:m (1) > 50 | (u)/u
—1|+op(1), and the desired result now follows from theorem 2 of [17] since
F}, is an uncensored Kaplan-Meier estimator under a reversed time scale.[]

Proof of theorem 1. Define V() = \/7_1”13}'(71) — Fj(n)llco, and note that by
corollary 1 of Massart [20], P(Vj) > z) < 26*2"’32, for all z > 0 and any
distribution Fj (). This inequality is a refinement of the celebrated result of
Dvoretsky, Kiefer and Wolfowitz [6], given in their lemma 2, and the exten-
sion to distributions with discontinuities is standard. Using lemma 6 below,
we obtain [|Vjlly, < 1/3/2 for all 1 < j < p,. Now, by lemma 7 below
combined with the fact that limsup,, , ., ¥2(z)¥2(y)/¥2(zy) = 0, we have

that there exists a universal constant ¢, < oo with Hmax1<j<pn Vj(”)Hw <
- 2

cxv/log(1 + pp)+/3/2 for all n > 1. The desired result now follows for the
constant ¢y = 1/6c,, since log(k + 1) < 2logk for any k > 2.0

LEMMA 6. Let X be a random wvariable with P(|X| > z) < Ke=“*" for
every > 0 and constants K,C and p > 1. Then || X|y, < ((1 +K)/C)/P.

LEMMA 7. Let ) be a convez, nondecreasing, nonzero function with ¢(0) =
0 and limsup, , ., ¥(2)¥(y)/¢(cxy) < oo for a finite constant c. Then, for
any random variables X1, ..., Xpm, ||max; <i<m Xill,, < K¢~ (m) x maxi<i<m || Xilly,
for a constant K depending only on 1.

Proof of lemmas 6 and 7. These are lemmas 2.2.1 and 2.2.2, respectively,
of [26], and the proofs can be found therein.0]

Proof of theorem 2. Let Uj, j = 1,...,pp, be i.i.d. uniform random vari-
ables independent of the data. Then, by theorem 4 below, we have for each
1 < j < pn that there exists a measurable map g;(,) : R* x [0,1] — C[0,1]
where Bjn) = gj(n)(X1j(n)s - - - » Xnj(n), Uj) is a Brownian bridge with

(18) P (vn H\/ﬁ(ﬁj(n) — Fj(n) — Bjn) (Fj(n))Hoo >z +12logn) < 2¢7°/%,

for all z > 0. Note that this construction generates an ensemble of Brown-
ian bridges Bj(y),- - - Bp, (n) that may be dependent when the components
in Xi(n) = (X11(n)5- -+ > X1p,(n)) are dependent. However, each Bj, only
depends on the information contained in Fj,) and the independent uniform
random variable Uj. Thus Bj,,) depends on F, only through the information
contained in Fj(,), and the ensemble of Brownian bridges is conditionally
independent given F,,. Note also the validity of (18) for all n > 2.
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Define Vj(,) = ((\/ﬁ/(log n)) H\/ﬁ(ﬁj(n) — Fjn)) — Bj(n)(Fj(n))Hoo - 12)+,
where u™ is the positive part of u. By lemma 6, expression (18) implies
that ||Vj(n)lly, < 18/logn. Reapplying the result that log(k + 1) < 2logk
for any k > 2, we now have, by the fact that limsup, , . ¥1(z)¥1(y)/
Y1(xy) = 0 combined with lemma 7, that there exists a universal constant
0 < ¢ < oo for which Hmaxlgjgpn Vj(n)H¢ < cglogpn/(logn). Now (4)
follows, for ¢; = 12, from the definition of le(n).D

THEOREM 4. For n > 2, let Y1,...,Y, be i.i.d. real random wvariables
with distribution G (not necessarily continuous), and let Uy be a uniform
random variable independent of Y1,...,Y,. Then there exists a measurable

map gn, : R* x[0,1] — CI0, 1] such that B = gn(Y1,...,Yy,Us) is a standard
Brownian bridge satisfying, for all x > 0,

(19) P (Va|va(Gn-6)-B(G)| >z+12logn) < 26775,
[e 0]
where G, is the empirical distribution of Yi1,...,Y,.

Proof. By theorem 20.4 of Billingsley[2], there exists a measurable hg :
[0,1] = [0, 1]? such that (U1, Usz) = ho(Up) is a pair of independent uniforms.
Moreover, standard arguments yield the existence of a function h, : R* X
[0,1] — [0,1]” such that (Vi,...,Vn) = hn(Y1,...,Y,,U1) is a sample of
ii.d. uniforms and (Y3,...,Y,) = (¥ (V1),...,%(V,)), where ¢(u) = inf{z :
G(z) > u}. U is needed to handle possible discontinuities in G.

Let H, be the empirical distribution for V1,...,V,, and note that

~

(200  Va(Ha(G(2)) - G(z)) = Va(Gu(z) - G(2), Yz eR

by design. Now by the Hungarian construction (theorem 1) of Bretagnolle
and Massart [3], there exists a Brownian bridge B depending only on Vi, ..., V,

and Us such that P (\/ﬁ SUPyc[0,1] ‘\/ﬁ(ﬂn(u) —u) — B(u)‘ >z + 12log n) <
2¢2/6 for all 2 > 0, and thus by (20),

(21) P (v |[v/n(Gn - @) - B(G)Hoo >x+12logn) < 2679, vz >0,

By lemma 8 below, we can take B to be fn(V4,...,V,,Us), where f, :
[0,1]"*! + DI0,1] is measurable and D0, 1] has the Skorohod rather than
uniform metric, since both ¢ — /n(H,(t) —t) and ¢ — B(t) are Borel mea-
surable on the Skorohod space D0, 1]. Since P(B € C[0,1]) = 1, and since
the uniform and Skorohod metrics are equivalent on C[0,1], we now have
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that f, is also measurable with respect to the uniform topology. Thus the
map g : R* x[0,1] — C]0, 1] defined by the composition (Y1,...,Y,,Uy) —
(Vi,...,Vys,Us) — B is Borel measurable, and (19) follows.[]

LEMMA 8. Given two random elements X and Y in a separable metric
space X, there ezxists a Borel measurable f : X x [0,1] — X and a uniform
random variable Z independent of X, such that Y = f(X, Z) almost surely.

Proof. The result and proof are given in [21]. While Skorohod’s paper does
not specify uniformity of Z, this readily follows without loss of generality.(]
Proof of corollary 1. Apply theorem 1 and the following identity:

(22)

/ 2 [dFyy(2) — dFyny(@)] = - [ (B (@) — Fymy(@)] dar.0
(a5 (n) 05 (n)] (9 () 0j(n)]

Proof of corollary 2. Let Uj,) = (logpy, + log n)t/r v max1<i<n | Xij(n) —
n)l; for 1 < j < pp, and note that the integration by parts formula yields

1 Xjm) — Bim) < 2Ujm) | Ein) — Fjmylloo +/ P(|X1j(n) — Hjm)| > u)du

Uj(n)

1
= Op(logn—l—logpn)l/p x Op ( Ognpn) -I-OP(npn)_kza

by lemma 7, theorem 1, and by the definition of Uj,).l]
Proof of corollary 3. Let S;(n) be the sample variance version with n in

the denominator, and let 5']2(”) be the version with denominator n — 1. Then
S’;(n)/a]z.(n) —1=0n"1)+1+0(1) (S]?(n)/ajz.(n) - 1). and thus we can

assume the denominator is n after adding the term O(n~!). Note that

2 - 2
Sitn) _12 Xijn) = Him)” 1‘ N (Xj(n) —Mj(m)

, .
%in) %(n) i)

For part (i), we apply corollary 1 twice, once for the data (X;;(n) —,Uj(n))2/0]2-(n)
and once for the data (X;jn) — fj(n))/0j(n)- This gives us

1 1
1| < 0p (,/ ng” & + oip” dﬁ)

= op(d2n?/?71/2), since n?/2~1/2 = o(1) by assumption. This yields part (i).

2
Sg(n) B
Tj(n)

max
1<j<pn
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For part (ii), we apply corollary 2 twice instead of corollary 1, once for
the data (Xij(n) — pj(n))z/ajz.(n) with 7 = 1, and once for the data (X;;,) —
n))/0j(n) With 7 = 2. This immediately yields

s2 1
max 2" 1) < Op \/ 2EPn (1og p + log ) + (npn) "2
1<5<pn | 05y n

2
1
+Op ( Ognpn (log pr, + logn)*/? + (npn)_'”)

= op (n37/ 2-1/2 n27_1) +Op ((npn)_k2 + (npn)_2k2) ,

which yields the desired result since v € (0, 1].0

Proof of corollary 4. We begin by establishing the results for E1p, (7(n), (n))
(result (1)) for both parts (a) and (b). Note that for any ¢ € R and any y > 0,
|®(zy) — ®(z)| <0.25 x (]1 —y| V|1 —1/y|). Thus

= Op(Ey,"), where iy = 28(—[T5,|) and T3 = V(X jn)~hoj(w)/ 0
Now, for part (a), theorem 2 yields

1

. 11
< 5 | max (G V gim)

(23) max |Fj(m) = #5)|

A~

Tj(n) O

i(n)

max
1<j<pn

max
vn 1<j<pn Tj(n)

= op(n""1/2d,), and thus Ep, (Tjn)s Tj(n)) = Op(Eé/2) + op(nY"1/2d,,).

n

1 log pn, bary — a,
frf(n) — Tj( )‘ =Op (01 ogn + cg logp o M)

For part (b), let Un = n'7/2 V (max1§j§pn,1§i§n ‘X”(n) — ,uj(n)‘ /U](n))
and note that U, = n?/" for large n, with high probability, since the maxi-
mum over all | Xjn) — ij(n)|/Tj(n) is Op(v1ogpn +logn) = op(n?/?) by the
subGaussian tail assumption. Now let the empirical distribution of the data
(Xij(n) — Hj(n))/Tj(n), for i = 1,...,n, be denoted Ff(n), and let Ff(n) denote
the distribution of (Xj(n) — #j(n))/0j(n)- We now have

) O me) g (58— @)

Tj(n)

= V7, (F3(@) ~ Flly ()4 [ (F () (1~ Fl (@) + R,
where R,, is only non-zero when U,, # n"’/ 2 but this latter condition occurs
with probability — 0 as n — co. Hence, Rn =op(n1) at least. Thus

/ (z))dz + op(log ppn/?71/2) + O (fk e k”ﬂ) )
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by theorem 2 applied to \/ﬁ(ﬁjp(n) - Fjp(n)), where B;-)(n) is the associated

Brownian bridge approximation and the errors do not depend on j. Hence

/BO r))dz+ o2 B;-)(n)(F]Q(n)(:L'))dx—f-OP(logpnn7/271/2).
T\>n

However, f|$|>m/2 B](n)(F (n) (z))dz is mean zero normal with variance
0 0
Lot e [Fln(e 8 = By @)l )] dd
nY/2
= 2/ / Fj(py(x)dzFy, dy—|—2/ / Fjpy(x)dzFj,) (y)dy
nY/2
n7/2
+2 / z)dw / Fln)
2 o0 2 2

2/ / kie ke dxdy + 2 (/ ke k2" dx)

n’Y/2 Y n’7/2

=o0 (e*kwv) where Fjo(n)

IA

=1- F]Q(n)' We now have

M Xjn) — K _
(25) Vi) ~ Bi) _ Zjny + op(log ppn?/?71/2),
T3(n)
where Z;(,) = fR ( j(n)( z))dz can be easily shown to be standard

normal, and the error term again does not depend on j. Thus E1p,, (7(n), 7(n))
= Op(Ey,) + op(logpan/*~'1?) = Op(Ey)’) + op(n®1/>7112).

We now establish the results for Egp)( T(n)s T(n)) (vesult (ii)) for both
parts (a ( ) and (b). Let ®(z) be the standard normal tail probability at z, let

T]( = Zj(n)+/nj(n)—H0,j(n))/ Tj(n), and define D?n % Max1<;<p, |T]f"(n)
(n) |- Then by lemma 9 below, we have ®(|Tn)))/®(ITj(m)|) = 1, provided
Tj2(n) — T]( )y~ 0. Note that we only need the ratios of the p-values to con-

verge when 2<I>(|Tj(n)|) > a/(2py), implying |T]-(n)\ < \/2 log (4pn/ (\/27ra)),
for all n large enough, since ®(z) < ¢(z)/z for z > 0. Since, for 1 < j < pp,

2
- o .
(26)  |Tjn) — Tim)| < BonTjm) + szin; (2D0nl ()| + D3
iln
maxi <j<pn |T]2(n) B j:’]2(n)| < OP(’I’L’YEO” + n7/2D0n) + OP(D(2)n)
For part (a), theorem 2 yields that Dg, = Op(logpp,n~/2d,), and the
right side of (26) becomes op(n? Eg,, +n%7/271/2d,, + n?7~1d2). For part (b),
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we use (25) to obtain that the right side of (26) becomes op(n? Eg,+n?Y~1/2).
We are done if maxi<j<p, 1{mjn) < @/(2pn), #j(n) > @/pn} = 0 with high
probability, as n — oco. Assume without loss of generality that pn — 00, since
otherwise the proof is trivial. Now, since ®(z) > = ¢(z)(1—z 2) for z > 0,
we have for large n that 2§(|Tj(n)|) < a/(2py,) implies T2 /2—|— log | Tj(n)| >

log (4pn/( 27ra)) — 0(1), where 0(1) does not depend on j. Thus by (26),

T2
(27) (logpn) 19550 1?]2(”) —1| < op(1+n"Egy +n"?Dyp).
R ()
This means that
23(|Tj(n)) i) 2p
28 —AY < — I og |Tim| +1 ( ”)
( ) a/pn — exp 2 Og | j(n)' Og \/ﬂa

2 4

= exp <— log2 + op(1 + n"Ey, + nY/ 2D0n)), where again the error terms
do not depend on j. Now previous results indicate that for the conditions
under either part (a) or (b), the left side of (28) is bounded uniformly over
1<j <ppby1/2+40p(1), and the desired conclusions follow.[]

LEMMA 9. For xp,y, > 0, ®(x,)/®(yn) — 1 if and only if 22 — y2 — 0.

Proof. Assume z2 — y2 — 0. Without loss of generahty, T, = ¢ €
[0,00]. If ¢ < o0, obv1ously ®(z,)/®(y) — 1. If ¢ = 00, B(z)/®(yn) —
é(zr)/d(yn) — 0 by a standard approximation for ®, and @(xn)/@(yn) -1
again. Now assume ®(z,)/®(y,) — 1. Again without loss of generality,
T, — ¢ € [0,00]. If ¢ < 00, obviously #2 — y2 — 0. But ¢ = oo implies
Yn — 00. Since ®(xy,)/®(yn) — d(xn)/d(yn) = o(1), the result follows.O]
Proof of corollary 5. From (26) and (28), we know that the desired result
will follow provided nEy, + n/2Dq, = Op(1). Since Dy, = 0p(n3'7/ 2-1/ 2)
by (25), it suffices to verify that Ey, = Op(n~7) for any v € (0,1/4]. This
will certainly hold if Ep, = Op(n~'/2). Now, E|5%/0? — 1|

S 2
_12 zJ(n i) (Xt ~ Hitm)
g
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26 M. R. KOSOROK AND S. MA

2
= O(n"1/2), since B |(Xijn) — j(n))?/0® — 1] is uniformly bounded.O
Proof of corollary 6. That the left-hand-side of (9) is op(1) follows from

condition (8) combined with theorem 1. By the definition of the sample
median, we have that F (5] ) —F. (f;(n y=H; i(n)> , where |Hj(,)| < 1/n.

This now implies that F ({1 ) (fj ) + F(§] ) (ﬁj(n ) = Hj(n)'
The result now follows from the mean value theorem and condition (8).00

Proof of Corollary 7. 2y/nhnEy, < maxij<p, v/n ‘F ('fj(n + hn)

Fjn)(&jtn) +hn)\ +max1s]‘£pn\/ﬁ\Ff(n> Eitn) = hn) = Fjn) (§j(n) — n)\
+maxs<jpn VA |Fin) €y + hn) = FyyEjcn) — hn) — 2F i) Ejay o
+maxi<j<p, Vn ‘Fj(n) (éj(n) + hn) = Fj(n) (éj(n) + ) — ﬁj(n) (éj(n) — b))+
Fj(n)(gj(n) - hn)‘ = Op (fmax1<j<pn |£j(n) — i) + h?z/2) + op(n1=1/2)
+O0p (maxlgjspn () (F (fg hy)) — Bj(n)(ﬂ(n)(éj(n) _ h"))D _

op(n?/?) + Op(hn/ ), via condltlons (10) and (11) and corollary 6.0
Proof of Corollary 8. Now, for some 5;(n) in between &;(,) and j(n), we

have fn)(€5m) i) = &im) = Fim)Eim)) = Fim)(Ejn))- Using the condi-
tions of the Corollary we are proving, we also have

(29) [(£in)(€}n) — Fim) &) Eimy — i)l < MlEjm) — &P/,

with probability approaching 1, for all n large enough. Hence U;‘(n)

(302v/1f j(n) (&n)) Ein) — &0.m)) = VA(Fim) Ejny) — Fimy(Eim)) + D)

where maxi<j<p, |Ajn)| = op(n 37/4-1/4) by corollary 6.
Now note that /n (F (fj ) — Fj(n)(ﬁj(n)))

=~V (B Eim) = Fjom Em) = Fim &m) + Fim) i)
~v/ (B Eim) = Fym &) + v (Bjim Giim) = Fim &)

= —Ajn) = Vjm) + Cj(n), where Cjny = v/nHj(,y and Hjy,y is defined in
the proof of corollary 6 with |Hj, | < 1/n. Hence Cjm) = Op(n71/2),
uniformly over 1 < j < pj,. Theorem 2 tells us that we can, U.IAlifOI‘IIlly
over 1 < _] < pn, replace Aj(n) and ij(n) with A;(n) = Bj(n)(F](n) (§](n))) -
Bj(n)(Fj(n)(€j(n))) and V’( ) = Bijn) )(1/2), with error op(nY~1/2). Note that

Zjm) = 2By (1/2) are standard normals and that Bj,)(t) = Wj)(t) —
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tW(n)(1), for all ¢ € [0, 1], for some standard Brownian motions Wj,,). Thus,
by the symmetry properties of Brownian motion, |A ](n)|

< Vdjm) loillp1| ny (O] + Sup l ) (t )|l + 85(m) [ Wiy (1)

= flj(n)((lj(n)), where 5j(n) = M|Ej(n) — &jm)l; M is as defined in (9); and

where W), W]f(n) and W]"(n) are Brownian motions.

Thus maxi<j<p, /lj(n)(knTn) <Op (\/IOSPn maxi<j<pn |‘§j(n) - fj(n)l) =
op(n®7/4=1/4) by corollary 6. Combining this with (30), we obtain

BL) Uiy = Zjm) + 2Vnfim) (Eim) Ein) — Eo,jn)) + 0p(n®1/47H4)

= ﬁj(n)+0p(n37/4_1/4), where the errors are uniform in j and (7]-(”) = Zjn)t+
20 i) (Ein)) i) — €o,i(n))» Since op(n?~2) = op(n37/4"1/4) x 0p(1).
Since Ujn) — U} = (fim)/Fitm) &) — )U]*( )» the structure of the

remainder of the proof parallels the latter part of the proof of corollary 4, but

with Fy,, replaced by (EOn) and Dy, replaced by Dg,, = U n) Uj(n) Thus

for By, (7 j(n),ﬂ';-(n)) = op(1), we need Ej,, = op(1) and D{)n = op(1). Since
D), = op(n®'/4=1/4) by (31), the result follows for all 4 € (0,1/3]. In order
for B (7, 7)) = 0p(1), we need n (E},)* = Op(1) and n?/2D}, =
Op(1). Assuming vy € (0,1/5], h, = Op(n=(=1/4) h=t = Op(n=51=7)/24),
we have, by corollary 7, Ej, = Op(n~(1=7)/6). Combining with (31) yields
nY (Ej,)* +n"/2Dj, = Op(n*1/3-1/3 4 n57/4=1/4) The conclusion follows.]

Proof of lemma 4. Part (a) is obvious. The results for part (b) follow from
Op(é,). Without loss of generality, we will assume that the denomlnators
for both Sj(n) and Sj(,) are n instead of n — 1. Thus

corollary 3, provided we show that EOn = maxi<;<p, 0; (n

&2 2 -2 2 2
lSj(n) - Sj(n)l < Tim) l(Xj(n) = 1im)” — (Xjm) = Hjm)) l

~ 2 2
mE Z": (Xz'j(n) —im)\ (Xz'j(n) - Nj(n))
i Tj(n) Tj(n)
(1 n /x 2
. 2@§+2én\llz (M) ,
naa Oj(n)

Part (i) now follows easily. For part (ii), we utilize corollary 2 and the sub-
Gaussian tail assumption with 7 = 1 and with X, in the corollary replaced
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by n~! i1 (Xijm) — uj(n))f/of-(n) and with p1(,) replaced by 1. With these
replacements, maxi<j<p, |Xjn) = #jn)| = op(1), and we are done.[]

Proof of corollary 9. This is a consequence of lemma 4. Let Dy, =
\/E(X']-(n) — X(n))/0j(n), and note that Don = Op(y/né,). Thus, to ensure
normalization does not affect the conclusions of corollary 4, we need the
respective rates of Ep, and Dy, to not exceed the rates of Ep, and Dy, at
the appropriate points. For part (a.i) when d,, = O(1), we need Ey,, = op(1)
and Dy, = op(1), which holds if &, = op(n~'/?). For part (b.i), we need
Eon = Op(n~7) and Dy, = Op(n~7/2), which holds if &, = Op(n~—1/2-7/2),
since 7 € (0,1/2]. The remaining arguments are similar.[]

F](n) - F](n)Hoo and, for

Proof of theorem 3. Define H, = maxi<;j<p,
each § > 0, H,(8) = MAaX1<j<p, SUP|s_t/<s ‘ﬁ’j(n) (s) — ﬁ’j(n)(t)‘. Suppose now
that for some positive, non-increasing sequences {sy,d,}, with §, — 0, we
have H,(d,,) = op(sn) and P(€, > 6,) = o(1). Then, by the definition of &,,

(32) H, = H,1{é, < 8,} + H,1{&, > 6,} < Hp(,) + 0p(sn) = 0p(sn).
Now, by theorem 2 and condition (15), we have for any 8, | 0, v/nH(d,) <
MaX1 < <p, SUPJar/<d, V7 | Ejin)(5) = Fym)(3) = Eym)(£) + Fjio ()| ++/AM by

< maxi<j<p, SUP|s 4<s, ‘Bj(n)(Fj(n) (s)) — Bj(n)(Fj(n)(t))‘ + Op((logn
+1log pn)/+/n++/ndy). Combining this with a reapplication of condition (15)
plus lemma 10 below (a modulus of continuity bound for Brownian motion),

(33) Vi (6a) < Op (y/(logpa)6n log(1/5,) + % + V).
Using the fact é, = op(1), we can find a positive, decreasing sequence
dn, — 0 with &, = op(d,). Now, by applying (32) with s, = 1, we obtain
result (i): H, = op(1). For result (ii), we use the fact log p, = o(n?), to con-
struct a positive, non-decreasing sequence r, — oo with r, logp, = o(n?)
and r,/logn = o(1). Since n'~7(logn)é, = Op(1), we have n1 ¢, log(1/¢,) =

~

€n

1 1—v ) _
P <log (nl_’Y(log n)én) + log(n" " 7logn) ) = Op(1).

Thus, if we set 6, = r,/(n'~7logn), & = op(d,). We also have, by (33),

I:In(dn) —0p (\/1 o rn log pn " logn!=7 + loglogn — log +0< 1 ))

n nl=7 logn nl=7

n' 7 (logn)

= op(n~(1"7). The proof is done after reapplying (32) with s,, = n~(1-7).0
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LEMMA 10. Let W : [0,1] — R be a standard Brownian motion. Then
there exists a universal constant ky < oo such that, for all 0 < § < 1/2,

< koy/dlog(1/6).

Proof. Denote Z(8) = sup|,_s <4 |W(s) — W(t)|- Lemma 1.1.1 of [4] yields
that for some Cy < oo, P(Z(6) > xv/8) < Coé e *"/% for all z > 0 and
§ € (0,1/2]. Letting u = zv/8 we obtain P(Z(8) > u) < Coé le */(49),
Since —u?/(46) +log(1/6) is increasing in & for all u > 2, we obtain for some
k. < oo that P(Z(8) > u) < kee ¥*/2 for all u > 0, since § < 1/2. Now the
desired result follows for some k¢ not depending on § via lemma 7.00

Proof of corollary 10. Result (i) follows directly from part (i) of theorem 3
and theorem 1 plus the fact that the absence of ties yields

(34) Op(n™) = Fim)(Eim) — Fitn) &)
= op(1) + Fjin)(€im) — Fim)(&in))>

where the errors are uniform in j. To prove result (ii), we first utilize part (ii)
of theorem 3 and a reapplication of theorem 1 to reduce the uniform er-

sup |W(s) —W(t)|
|s—t]<d

Y2

ror in (34) to op(n~(1=7)/2), obtaining C, = maxi<;<p, ‘Ej(n) - éj(n)‘ =
op(n~(1-1/2), Using an alternative expansion to (34) followed by part (ii) of
theorem 3, we now obtain Op(n_l) = ﬁ’](n)(fj(n))—ﬁ’j(n) (éj(n)) = ﬁ}(n)(fj(n))—
Ejty G+ [ Fin) i) = Fin) i) — Fimy &) + Fjo En)] + Fin) )~
Finy(€jmy) = op(n™ M) + [Hy)] + (1 + 0p(1)) Fi(n) &in) Eim) — Ejim))
where errors are uniform in j. Define H,, = maxi <j<p, [Hj(n)l> an = n~=(1=7/2

and 0, = ¢n/4. Note that P(Cp, > d,) = o(1), P(maxi<j<p, [€imn) — &in)| >

gn) = o(1), and P(max;<;<p, |£j(n) — &)l > gn) = o(1). Thus VnH, =

Y <1g;%)l(1n |5t|<6i1:1§)<s,t<qn‘ it )( i )(61( ) S)> it )( i )(gj( : )>D

t+op(n=(/2-7) = Op (/10 pndn 108(4n/0n)) + op(n~(/27), where the
last equality follows from lemma 10 and the rescaling properties of Brownian
motion. Thus H,, = op (n*3(1*7)/4), and part (ii) follows.

For part (iii), recycling arguments yields H,, = hp+/n maxi<j<p,

Fitm) — fj(n)\
< maxi<j<p, v/ |Fjim m + hn) = Fii i) + hn) + Fy) €y + hn)
— ) Eym) + hn)| + maxi<jzp, VA | Fj) () = hn) = Fn) Em) — )+
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By Eitn) = hn) = By Gy — hn)| = Op (maxi<jcp, v H Fjn) — Fj(n)Hw)
+op (n—(l/z 7) o ( 37/4—1/4)+OP (maX1<j<p ‘B~ (Fytm) (€j(m) + Pn))—

P
(n) ( j(n) g](n hn) D +Op (maxl<]<p |B( ( i(n) (gj(n - ))_
(m) (Fi(n) €a(n ha))|) = or (n¥7/471/%) + Op (maxi<j<p, suP,y<,
| () = Bim)(®)]) = op(n®/4=1/4) + Op (/3 10g(1/5,)), where &, =

n*3(1 /4, ensuring that P(C, > &) = o(1). Hence H, = Op(n30-7/8
x+/Iogn ) = op(n®/4=1/%)  and the desired result follows.[] ) )
Proof of corollary 11. Note that since |fj(n)—fj(n)(fj(n))| <|fim)— Fitm)l+
| Fitn) = Fitm)Ein)) s maxi<j<pn [Fim) = Fitn)EGim))l = op (R tn=30=0/)
op(hiln (1 7)/2) + 0p(h?) = op(h;tnM/2) 4 Op(hy/?), where the
second-to-last equality comes from corollary 7. Now by part (ii) of corol-
lary 10, 2v/nf;(n) (€(n)) j(n) —Ejn)) = 0p(n®/4~1/%). Thus, considering (31)
and the lines following, none of the error rates in the proof of corollary 8 are
altered after replacing éj(n) and fj(n) with Ej(n) and fj(n), respectively.[]

Acknowledgments. The authors thank Editor Jianging Fan, an asso-
ciate editor, and three referees for several very helpful suggestions.

REFERENCES

[1] BENJAMINI, Y., and HOCHBERG, Y. (1995). Controlling the false discovery rate: A
practical and powerful approach to multiple testing. J. R. Statist. Soc. Ser. B 57,
289-300.

[2] BILLINGSLEY, P. (1995). Probability and Measure, 3rd edition. Wiley, New York.

[3] BRETAGNOLLE, J., and MASSART, P. (1989). Hungarian construction from the
nonasymptotic viewpoint. Ann. Probab. 17, 239-256.

[4] CsOraO, M. and Révész, P. (1981). Strong Approzimations in Probability and Statis-
tics (Probability and Mathematical Statistics, Vol. 42). Academic Press, New York.

[6] DupoIT, S., FRIDLYAND, J. and SPEED, T. P. (2002). Comparison of discrimination
methods for the classification of tumors using gene expression data. J. Amer. Statist.
Assoc. 97, 77-87.

[6] DVORETSKY, A., KIEFER, J., and WOLFOWITZ, J. (1956). Asymptotic minimax char-
acter of the sample distribution function and of the classical multinomial estimator.
Ann. Math. Statist. 27, 642—669.

[7] FaN, J., HALL, P. and Yo, Q. (2005). To how many simultaneous hypothesis tests
can normal, Student’s ¢ or bootstrap calibration be applied? Unpublished manuscript.

[8] FaN, J., PENG, H. and HuaNG, T. (2005). Semilinear high-dimensional model for
normalization of microarray data: a theoretical analysis and partial consistency. J.
Amer. Statist. Assoc. 100, 781-796.

[9] FAN, J., TAM, P., VANDE WOUDE, G. and REN, Y. (2004). Normalization and analysis
of cDNA microrarrys using within-array replications applied to neuroblastoma cell
response to a cytokine. Proc. Nat. Acad. Sci. 101, 1135-1140.

[10] GENOVESE, C. and WASSERMAN, L. (2002). Operating characteristics and extensions
of the false discovery rate procedure. J. R. Stat. Soc. Ser. B 64, 499-517.

imsart-aos ver. 2006/01/04 file: asy-7single.tex date: October 5, 2006



ASYMPTOTICS FOR MICROARRAYS 31

[11] GHOsH, D. and CHINNAIYAN, A.M. (2005). Classification and selection of biomarkers
in genomic data using LASSO. Journal of Biomedicine and Biotechnology 2, 147-154.

[12] Gui, J. and L1, H. (2005). Penalized Cox regression analysis in the high-dimensional
and low-sample size settings, with applications to microarray gene expression data.
Bioinformatics 21, 3001-3008.

[13] Huang, J., Kuo, H.-C., KOROLEVA, I., ZHANG, C.-H. and BENTO SOARES, M.
(2003). A semi-linear model for normalization and analysis of cDNA microarray data.
University of Iowa Dept. of Statistics and Actuarial Science Technical Report 321.

[14] Huang, J., WANG, D., and ZHANG, C.-H. (2005). A two-way semi-linear model for
normalization and analysis of cDNA microarray data. J. Amer. Statist. Assoc. 100,
814-829.

[15] KoMmLds, J., MAJOR P., and TUSNADY, G. (1976). An approximation of partial sums
of independent rv’s and the sample df. 1. Z. Wahrsch. verw. Gebiete 32, 111-131.
[16] Kosorok, M. R. (1999). Two-sample quantile tests under general conditions.

Biometrika 86, 909-921.

[17] Kosorok, M. R. (2002). On global consistency of a bivariate survival estimator
under univariate censoring. Statist. Probab. Lett. 56, 439-446.

[18] Kosorok, M. R., and Ma, S. (2005). Comment on “Semilinear high-dimensional
model for normalization of microarray data: a theoretical analysis and partial consis-
tency” by J. Fan, H. Peng, T. Huang. J. Amer. Statist. Assoc. 100, 805-807.

[19] Kosorok, M. R., and Ma, S. (2005). Marginal asymptotics for the “large p, small
n” paradigm: with applications to microarray data. University of Wisconsin, Madison,
Dept. of Biostatistics and Medical Informatics Technical Report 188.

[20] MASSART, P. (1990). The tight constant in the Dvoretsky-Kiefer-Wolfowitz inequal-
ity. Ann. Probab. 18, 1269-1283.

[21] SkOROHOD, A. V. (1976). On a representation of random variables. Theory of Prob-
ability and its Applications 21, 628-632.

[22] SpanG, R., BLANCHETTE, C., ZUZAN, H., MARKS, J., NEVINS, J., and WEST, M.
(2001). Prediction and uncertainty in the analysis of gene expression profiles. In Pro-
ceedings of the German Conference on Bioinformatics GCB 2001. Eds. E. Wingender,
R. Hofestdt and I. Liebich, Braunschweig, 102-111.

[23] STOREY, J. D. (2002). A direct approach to false discovery rates. J. R. Statist. Soc.
Ser. B 64, 479-498.

[24] STOREY, J. D., TAYLOR, J.E., and SIEGMUND, E. (2004). Strong control, conserva-
tive point estimation and simultaneous conservative consistency of false discover rates:
A unified approach. J. R. Statist. Soc. Ser. B 66, 187-205.

[25] vaN DER LaAN, M. J., and BRYAN, J. (2001). Gene expression analysis with the
parametric bootstrap. Biostatistics 2, 445—461.

[26] VAN DER VAART, A. W., and WELLNER, J. A. (1996). Weak Convergence and Em-
pirical Processes: With Applications to Statistics. Springer, New York.

[27] WEsT, M. (2003) Bayesian factor regression models in the “large p, small n”
paradigm. In: Bayesian Statistics 7, Eds. J. M. Bernardo, M. J. Bayarri, A. P. Dawid,
J. O. Berger, D. Heckerman, A. F. M. Smith and M. West, 733-742. Oxford University
Press, Oxford.

[28] WEsT, M., BLANCHETTE, C., DREsSSMAN, H., HUANG, E., IsHIDA, S., SPANG, R.,
ZuzaAN, H., OLsON, J. A. JrR., MARKS, J. R., and NEVINS, J. R. (2001). Predicting
the clinical status of human breast cancer by using gene expression profiles. Proc. Nat.
Acad. Sci. 98, 11462-11467.

[29] Yang, Y.H., Duporr, S., Luu, P., AND SPEED, T.P. (2001) Normalization for
c¢DNA Microarray Data. Microarrays: Optical Technologies and Informatics, Vol. 4266

imsart-aos ver. 2006/01/04 file: asy-7single.tex date: October 5, 2006



32 M. R. KOSOROK AND S. MA

of Proceedings of SPIE, 141-152.

DEPARTMENT OF BIOSTATISTICS Di1vISION OF BIOSTATISTICS
UNIVERSITY OF NORTH CAROLINA-CHAPEL HILL YALE UNIVERSITY

3101 MCcGAVRAN-GREENBERG, CB 7420 60 CoLLEGE ST, LEPH 209
CHAPEL HiLL, NC 27599 NEw HAVEN, CT 06520

USA USA

EMAIL: KOSOROKQUNC.EDU EMAIL: SHUANGGE.MAQYALE.EDU

imsart-aos ver. 2006/01/04 file: asy-7single.tex date: October 5, 2006



