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Abstract As RNA-seq is replacing gene expression microarrays to assess
genome-wide transcription abundance, gene expression Quantitative Trait Lo-
cus (eQTL) studies using RNA-seq have emerged. RNA-seq delivers two novel
features that are important for eQTL studies. First, it provides information on
allele-specific expression (ASE), which is not available from gene expression
microarrays. Second, it generates unprecedentedly rich data to study RNA iso-
form expression. In this paper, we review current methods for eQTL mapping
using ASE and discuss some future directions. We also review existing works
that use RNA-seq data to study RNA isoform expression and we discuss the
gaps between these works and isoform-specific eQTL mapping.
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1 Introduction

With the completion of the human reference genome [36] and the pilot study
of the 1000 Genomes Project [17], an unprecedented wealth of knowledge has
been accumulated for human DNA sequence variations. In contrast, much
less of this DNA-level knowledge has been translated to the understanding
of human diseases. Gene expression quantitative trait loci (eQTLs) mapping,
which aims to dissect the genetic basis of gene expression, is one of the most
promising approaches to fill this gap [11]. Many early genome-wide eQTL stud-
ies were conducted on experimental populations [7,9,43,57,67,89]. Recently,
more eQTL studies have been reported on human populations [72,74,75] and
some of them used both DNA and RNA information to study phenotypic out-
comes, such as complex diseases [18,31,66,103].

RNA-seq is replacing gene expression microarrays to be the major tech-
nique for genome-wide assessment of transcript abundance. Compared with
microarrays, RNA-seq provides more accurate estimates of transcript abun-
dance for either known or unknown transcripts in a larger dynamic range,
while requiring less RNA materials [90]. The central computational problems
in RNA-seq include read mapping, transcriptome reconstruction (or RNA-
isoform selection given exon annotations), transcript abundance estimation,
and differential expression analysis. Since a number of RNA-seq protocols were
developed at 2008 [10,47,51,84], numerous technical improvements or compu-
tational/statistical methods have been developed for RNA-seq. We refer inter-
ested readers to Ozsolak and Milos (2010) [52] and Garber et al. (2011) [21]
for recent reviews of experimental and computational methods for RNA-seq,
respectively. In this review paper, we focus on the statistical/computational
methods of eQTL mapping using RNA-seq.

A few pioneer studies of eQTL mapping using RNA-seq have emerged [50,
58]. These pioneer studies employed existing eQTL mapping methods that
were designed for microarray data, and thus cannot fully exploit the new
features in RNA-seq data. For eQTL studies, RNA-seq provides allele-specific
gene expression (ASE), which is not available in microarrays, and unprecedent-
edly rich information for RNA-isoform expression. To the best of our knowl-
edge, no statistical/computational method has been specifically developed for
eQTL mapping using RNA-Seq, except for our recent work [77]. In the follow-
ing, we will discuss the issues and potentials of eQTL mapping using ASE and
isoform-specific eQTL mapping.
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2 eQTL mapping using ASE

2.1 Introduction

In a diploid individual, each gene has two alleles: the paternal and maternal
allele. The allele-specific transcript abundance is referred to as the ASE of this
gene. Cis-acting regulation is due to DNA variation that directly influences the
transcription process in an allele-specific manner (Figure 1(a)). Alternatively,
trans-acting regulation affects the gene expression by modifying the activity
(or abundance) of the factors that regulate the gene, which leads to the same
amount of expression changes for both alleles [91] (Figure 1(b)). In this paper,
we refer to an eQTL of a gene as a cis-eQTL if it alters the expression of the
two alleles of this gene differently, otherwise we refer to the eQTL as a trans-
eQTL. Therefore, cis- and trans-eQTL can be distinguished by ASE (Figure
1(a), 1(b)) [16,64]. In contrast, total expression of a gene cannot separate
cis-eQTL and trans-eQTL because the two types of eQTL result in similar
patterns across a group of individuals (Figure 1(c), 1(d)). In previous eQTL
studies using microarrays, cis-eQTLs were often not distinguished from local-
eQTLs due to the lack of ASE. Here, we use the precise definitions of cis- and
trans-eQTLs based on the ASE patterns [63]. In what follows, we introduce
more details of ASE and cis-/trans-eQTL mapping using RNA-seq data.

2.1.1 ASE

In earlier studies, ASE has been assessed by quantitative genotyping follow-
ing RT-PCR [12,16,64], which is a relatively labor-intensive low-throughput
approach. Genome-wide genotyping arrays have also been used to assess ASE
at pre-determined polymorphic sites [45,24,23]. Recently, RNA-seq has been
used to study the allelic imbalance of gene expression by comparing the ex-
pression of the two alleles at a single heterozygous SNP [14,25,48,94]. Among
these existing approaches for ASE studies, RNA-seq is the only one that pro-
vides both allelic and total expression data [55]. Previous studies have shown
that allelic imbalance of gene expression is relatively common. For example,
Zhang et al. [100] showed that 20% of target polymorphic sites exhibited 1.5-
fold expression difference, and Ge et al. [23] showed that 30% of measured
transcripts exhibited 1.2-fold expression difference.

Currently, ASE is often assessed by mapping the RNA-seq reads to ref-
erence genome followed by counting the number of allele-specific reads that
overlap with heterozygous SNPs. Two major technical difficulties hinder accu-
rate measurement of ASE. One is that the mapped allelic reads may be biased
to the allele represented by the reference genome. The other is relative low
density of heterozygous SNPs (other other types of polymorphic sites) where
we can assess ASE. For the former problem, one effective treatment is to re-
move the SNPs that tend to cause mapping bias [58]. For the latter problem,
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Fig. 1 (a) An example of a cis-eQTL in two samples. In Sample 2 where the target SNP
(the SNP for which we test association) has a heterozygous genotype CG, the expression of
the two alleles are different. (b) An example of a trans-eQTL in two samples. In Sample 2
where the target SNP has a heterozygous genotype TA, the expression of the two alleles are
the same. (c) A simulated data for a cis-eQTL across 60 samples with 20 samples within
each genotype class. (d) A simulated data for a trans-eQTL across 60 samples with 20
samples within each genotype class.

one can impute the genotypes of untyped SNPs and aggregate the informa-
tion of multiple SNPs given known haplotype. While haplotype information is
often not available, they can be imputed (together with genotypes of untyped
SNPs) using available genotype data and reference haplotypes [8,44]. Another
strategy that addresses both technical difficulties of ASE assessment is to di-
rectly map RNA-seq reads to individual-specific haploid genomes. The haploid
genomes may be available for the study of experimental cross, or they can be
imputed [8,44]. The success of this strategy relies on the accuracy the haploid
genomes. We are not aware of any study that has carefully compared the two
strategies or mapping to reference genome or imputed haploid genomes, and it
is certainly an interesting research topic. If there is no genotype data available
at all, it is also possible to align RNA-seq reads to the reference genome, call
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genotypes, and then impute haplotypes using the genotype calls [81].

A simple binomial test can be applied to test whether the expression of
the two alleles are the same or not. However a binomial distribution cannot
accommodate possible over-dispersion in the data, and thus beta-binomial
distribution may be preferred. Recently, Skelly et al [71] have proposed a hi-
erarchical Bayesian model that combines information across loci to test allelic
imbalance of gene expression.

2.1.2 eQTL mapping using ASE

To the best of our knowledge, except for our recent work [77], no method has
been proposed for eQTL mapping using ASE measured by multiple SNPs. In
what follows, we briefly describe our eQTL mapping method using ASE by an
example of a cis-eQTL for one gene in three individuals (Figure 2). Assume

Fig. 2 (a) RNA-seq measurements of a gene with two exons in three individuals. (b) TReC
for the three individuals. (c) ASE for individual (i). (d) ASE for individual (ii).

that this gene has two exons and there are two exonic SNPs, one on each exon,
with alleles A/T and A/G, respectively. We test the association of the gene
expression with an upstream SNP (target SNP), which has two alleles C and
T. A straightforward approach is to test the association between Total Read
Count (TReC) of this gene and the target SNP (Figure 2(b)). In this example,
TReC is negatively correlated with the number of T alleles of the target SNP.

Testing the association between ASE and the target SNP is less straight-
forward. We can consider it as a two-step procedure: 1). count the number of
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allele-specific reads as ASE; 2). assess the association between ASE and the
target SNP (Figure 3).

Fig. 3 A flowchart of the two-step procedure for eQTL mapping using ASE.

We first use the example in Figure 2 to describe the procedure of counting
allele-specific reads. An RNA-seq read is allele-specific if it can be assigned to
one of the two alleles of the gene without ambiguity. As illustrated in Figure
2(a), individuals (i) and (ii) have heterozygous genotypes for at least one ex-
onic SNP, and thus their ASE can be measured by the RNA-seq reads that
overlap with the heterozygous SNPs. Specifically, all the RNA-seq reads in in-
dividual (i) are allele-specific (Figure 2(c)). However, for individual (ii), only
the reads of the first exon are allele-specific, while the reads of the second exon
do not overlap with any heterozygous SNP and hence are not allele-specific
(Figure 2(d)). Haplotype information is needed to obtain gene-level ASE by
combining ASE measured at different exonic SNPs. For example, for individ-
ual (i), we count the number of allele-specific reads on the haplotype A-A and
the haplotype T-G.

Next, we discuss association testing using ASE. It is important to note that
the target SNP can be anywhere in the genome, and we can study the ASE
association as long as the target SNP is connected with the gene of interest
by contiguous haplotypes. For example, for individual (i) in Figure 2(a), given
haplotypes C-A-A and T-T-G, we can assign ASE of the gene to the two alleles
of the target SNP (Figure 2(c)). The association testing seeks to answer this
question: whether one allele of the target SNP is associated with higher or
lower ASE of the gene of interest. If the answer is yes, we expect ASE of one
allele is higher than the other allele when the target SNP is heterozygous, and
ASE of the two alleles are comparable when the target SNP is homozygous.
For example, individual (i) has a heterozygous genotype at the target SNP,
and the C-A-A allele has higher expression than the T-T-G allele. In contrast,
individual (ii) has a homozygous genotype at the target SNP, and the two
alleles have the same number of allele-specific reads.
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Finally, we conclude this section by a real data example consisting of 65
HapMap YRI samples [58]. Figure 4(a) shows the association between TReC of
the gene KLK1 (ENSG00000167748) and SNP rs1054713. There is an apparent
negative correlation between TReC of KLK1 and the number of T alleles of
SNP rs1054713. Figure 4(b) illustrates the association between ASE of KLK1
and the two alleles of SNP rs1054713. Denote the number of allele-specific
reads pertaining to the C allele and the T allele of SNP rs1054713 by ASEc and
ASEt, respectively. We are interested in whether the proportion ASEt/(ASEc
+ ASEt) is deviated from 0.5. The results of TReC association show that
the T allele is associated with lower expression (Figure 4(a)). If the genetic
effect is allele-specific, then within one individual, the T allele should also have
lower expression than the C allele; thus the proportion ASEt/(ASEc + ASEt)
should be lower than 0.5. This is consistent with the observation shown in
Figure 4(b).

Fig. 4 (a) An example of TReC association between the gene KLK1 and SNP rs1054713.
The y-axis is the total number of reads mapped to the gene KLK1 and each point corresponds
to one of the 65 samples. (b) An example of ASE association. The y-axis is the proportion of
ASEt over all the allele-specific reads. The allele of ASEt is defined as the allele corresponding
to the T allele of SNP rs1054713 when the SNP is heterozygous, and it is defined arbitrarily
when the SNP is homozygous. When SNP rs1054713 is homozygous, the proportion is around
0.5; when it is heterozygous, the proportion is below 0.5, indicating that the expression from
the T allele is lower than that from the C allele.

2.2 Methods

Let Ti and Ni be TReC and ASE (i.e., allele-specific read count) in sample i
(1 ≤ i ≤ n, where n is the number of study samples), respectively. Suppose
that the target SNP has two alleles, A and B. Denote the two haplotypes of
the gene of interest by Hi = (Hi1, Hi2). Let Ni1 be the number of allele-specific
reads that are mapped to haplotype Hi1, which implies Ni1 ≤ Ni. Let Gi be
the genotype of the target SNP, which takes the value AA, AB or BB. Our
model is based on the following factorization:

P (Ti, Ni, Ni1|Hi, Gi) = P (Ti|Hi, Gi)P (Ni|Ti, Hi, Gi)P (Ni1|Ni, Ti, Hi, Gi).
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Each component is defined as follows.

– P (Ti|Hi, Gi). Given Gi, the total read count Ti is assumed to be indepen-
dent of Hi and follows a negative binomial distribution with mean µAA,
µAB or µBB corresponding to Gi = AA, AB or BB, respectively, and
a dispersion parameter φ. We define the association parameter β(T) ≡
log(µAA/µBB), i.e., the log ratio of the gene expression between genotype
classes AA and BB. The eQTL strength can be assessed by testing whether
β(T) = 0. We refer to the above model, denoted by Pβ(T),φ(Ti|Gi), as the

TReC model. The superscript (T) in β(T) indicates that the association
parameter is defined in the TReC model.

– P (Ni|Ti, Hi, Gi). This part of information is irrelevant for assessing the
eQTL strength, and thus can be factored out of the likelihood.

– P (Ni1|Ni, Ti, Hi, Gi). Given (Ni, Hi, Gi), the read count Ni1 is assumed
to be independent of Ti and follows a beta-binomial distribution with a
parameter π, which is the expected proportion of the allele-specific reads
from haplotype Hi1 over the Ni allele-specific reads, and a dispersion pa-
rameter ψ. If the target SNP is homozygous in sample i, i.e., Gi = AA or
BB, π is fixed to be 0.5; thus the two haplotypes Hi1 and Hi2 can be de-
fined arbitrarily because the likelihood remains the same if the definitions
of Hi1 and Hi2 are flipped. The samples with homozygous genotypes at the
target SNP only contribute to the estimation of the dispersion parameter
ψ. If the target SNP is heterozygous, π is a free parameter, and without
loss of generality, we define Hi1 and Hi2 such that the haplotype configu-
ration is A-Hi1 and B-Hi2. The eQTL strength can be assessed by testing
whether π is deviated from 0.5. Following the above discussion, we have
P (Ni1|Ni, Ti, Hi, Gi) = {Pπ=0.5,ψ(Ni1|Ni)}I(Gi=AA or BB){Pπ,ψ(Ni1|Ni)}I(Gi=AB),
where I(.) is an indicator function. We refer to this model as the ASE
model.

The TReC model can detect both cis- and trans-eQTL (although it cannot
distinguish cis- and trans-eQTL), and it is more powerful than a computation-
ally convenient approach: normal quantile transformation of the TReC data
followed by a linear regression [77]. The ASE model can only detect cis-eQTL.
In the following derivation, we show that the TReC and ASE data provide con-
sistent information for cis-eQTL mapping, and thus combining them increases
the power of cis-eQTL mapping. Let

β(A) ≡ log(π/(1− π)) = log(µA/µB), (1)

where the superscript of β(A) indicates that β(A) is the genetic effect defined in
the ASE model, and µA and µB denote the expected number of allele-specific
reads for haplotype A-Hi1 and B-Hi2. Recall that β(T) ≡ log(µAA/µBB),
where µAA and µBB are the expected TReC when the target SNP has the
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genotype AA and BB, respectively. Since TReC of an individual equals to the
summation of TReC on each allele, we have

β(T) = log(µAA/µBB) = log((µA + µA)/(µB + µB)) = log(µA/µB). (2)

Note that log(µA/µB) in (1) and (2) have different meanings. In (1), the
expression log(µA/µB) is the log ratio of ASE from the A-Hi1 allele vs. the B-
Hi2 allele within an individual with a heterozygous genotype at the target SNP.
In contrast, log(µA/µB) in (2) is the log ratio of TReC from two individuals
with genotypes AA and BB, respectively. By the definition of cis-eQTL, the
variation of gene expression abundance across individuals is due to allele-
specific expression, and thus we can equate log(µA/µB) in (1) and (2) for cis-
eQTL but not for trans-eQTL. In other words, for cis-eQTL, we can estimate
the genetic effect β based on the joint likelihood L(β, φ, ψ) combining the
TReC and ASE data, where

β = log (µAA/µBB) = log (π/(1− π)) ,

and

L(β, φ, ψ) =

n∏
i=1

Pβ,φ(Ti|Gi)

× {Pπ=0.5,ψ(Ni1|Ni)}I(Gi=AA or BB){Pπ,ψ(Ni1|Ni)}I(Gi=AB).

We refer to this joint model as the TReCASE model. We have also developed
a statistical test to distinguish cis- and trans-eQTL:

H0 (cis-eQTL) : β(A) = β(T), v.s. H1 (trans-eQTL) : β(A) 6= β(T).

One should use the TReC model for trans-eQTL and the joint model for cis-
eQTL [77]. The details of obtaining MLE from the TReC, ASE, and TReCASE
model are skipped and interested readers are referred to Sun (2011) [77].

2.3 Implementation

In most real data studies, the input data are RNA-seq data in the FASTA or
FASTAQ format, DNA genotype data, and haplotype data from reference pan-
els. The implementation of eQTL mapping using RNA-seq can be divided into
four major steps: DNA data processing, RNA data processing, read counting,
and eQTL mapping (Figure 5).

In the step of DNA data processing, we use a phasing program, such as
BEAGLE [8] or MACH [44], to impute the phase as well as to impute the
genotype of a large set of SNPs that are phased against a referenced panel. It
is also possible to align RNA-seq reads to the reference genome, call genotypes,
and then impute haplotypes using the genotype calls [81].
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Fig. 5 A workflow of eQTL mapping using RNA-seq data.

The step of RNA data processing involves mapping RNA-seq reads to the
genome. One can either map the reads of all the individuals to the same refer-
ence genome, or mapped them to the individual-specific haploid genomes that
are constructed based on the phasing results. The advantages/limitations of
these two approaches have been discussed in section 2.1.1.

The counting step counts TReC per gene, per sample, and counts the num-
ber of allele-specific reads per allele of a gene, per sample. If there are m genes
and n samples, the result of counting TReC is a matrix of size m × n, and
the result of counting ASE is a matrix of size m× 2n. Counting TReC is not
trivial because one may prefer to count the reads that overlap and only overlap
with the exonic regions of the gene of interest. Counting ASE is more compli-
cated because one needs to compare the nucleotides in a RNA-seq read with
the two alleles of any heterozygous SNP. Some Quality Control (QC) steps
should be implemented. For example, the reads with mapping ambiguity or
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low mapping quality should be removed. While counting allele-specific reads,
one should check the sequencing quality score of a read at a particular SNP.
If the sequencing quality score at that particular base pair is low, the read
should not be counted as allele-specific. In addition, one RNA-seq read may
harbor more than one SNP and those SNPs may suggest contradicting alleles
for the read, e.g., one SNP suggest this read is from paternal allele and the
other SNP suggest it is from the maternal allele. Such reads should also be
discarded.

Finally, in the step of eQTL mapping, the variation of TReC and/or ASE
of a gene is associated with a target SNP, using the haplotype information to
connect the alleles of the gene to the alleles of the target SNP. Two sets of
covariates can be included in the regression model. One is the set of observed
covariates, including the total number of reads per sample, batch, gender, age
etc. The other is the set of derived covariates that aim to capture unobserved
batch effects. For example, one may use standardized TReCs (TReCs of all
genes of a sample are normalized by the total number of reads of that sample)
to estimate Principal Components (PCs) via Principal Component Analysis
(PCA), and then use these PCs as derived covariates.

2.4 Discussions and Future Directions

The above discussions of eQTL mapping assume that the haplotypes are known
or they are accurately estimated by a phasing program. It is reasonable to ex-
pect that the haplotypes within exonic regions of a gene can be accurately
estimated. Almost 90% of the annotated genes are shorter than 100kb [20], in
which haplotypes estimated from genotypes (i.e., phasing) are usually accu-
rate [46]. In addition, RNA-seq assembly can fix possible switch errors from
phasing. Although most existing methods for genome-wide de novo RNA-seq
assembly do not produce allele-specific assembly yet [5,69], we conjecture that
reference-genome guided assembly, which is sufficient to fix switch errors from
phasing, is feasible and computationally efficient. The main challenge is to
infer the haplotypes connecting the target SNP and the gene body. Phasing
across a long genetic distance is often inaccurate, and RNA-seq assembly can-
not help if the target SNP is located in a non-exonic region, which is true in
most cases. Due to this limitation, we have carried out eQTL mapping only
for local SNPs within 200kb of each gene [77]. Although recent developments
render whole-genome phasing possible [19,35,97], these techniques are not ma-
ture enough for large-scale studies yet. Therefore, there is a pressing need to
develop statistical methods for eQTL mapping using ASE that can accommo-
date the uncertainty of long-distance phasing.

Xiao and Scott [94] have proposed several methods for cis-eQTL mapping
based on the allele-specific expression measured at a single exonic SNP from
phase-unknown data: an F-test to assess whether log(Ni1/Ni2) has a larger
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variance when the target SNP is heterozygous, a t-test to assess whether the
mean value of log(Ni1/Ni2) is deviated from 0, and a mixture-model-based
test in which log(Ni1/Ni2) is modeled by a mixture normal distribution to
account for phasing uncertainty. They found that the t-test/F-test has the
highest power when the LD between the target SNP and the exonic SNP is
high/low, and the mixture model approach has the highest power for moderate
LD. The problem they addressed can be considered as a simplified situation
of eQTL mapping using RNA-seq with a few limitations. First, they measured
ASE only on a single transcribed SNP instead of across all exonic SNPs of the
gene. Second, they did not borrow the information of TReC for eQTL map-
ping. Third, they modeled log(Ni1/Ni2) using normal approximation, which is
less accurate than directly modeling the read counts by discrete distribution,
especially for relatively lower read counts.

In addition to improving statistical power for eQTL mapping, dissecting
the genetic basis of ASE can provide important insights into biology questions.
For example, some recent studies have shown that cancer drivers/contributors
may show imbalanced allelic expression in germline and/or tumor tissues [30,
49,82,101]. Such allelic imbalanced expression may be considered as biomark-
ers and their genetic basis may be valuable to guide personal treatments.

3 Isoform-specific eQTL mapping

3.1 Introduction

One important source that contributes to functional complexity of the mam-
malian genome is the RNA isoforms due to alternative splicing of pre-messenger
RNA [33,36]. It has been shown that more than 90% of human genes are alter-
natively spliced [54,85], and gene expression is often differentially regulated at
the isoform level in different tissues and/or at different developmental stages
[85]. Previous studies have reported associations between alternative splicing
events and diseases such as cystic fibrosis [22] and cancer [83,86]. RNA-seq
data provide unprecedentedly rich information to study alternative splicing
events [54,76,85,90]. Specifically, read depth along the gene body is infor-
mative for inferring the underlying RNA-isoforms, and reads covering exon
junctions provide direct evidence of alternative splicing. Such information is
also available from exon tiling arrays [95] and exon junction arrays [68], but
with lower precision and limited by the probe design of the array.

There are three types of statistical/computational problems for the study
of RNA-isoforms using RNA-seq data: transcriptome reconstruction, isoform
abundance estimation, and differential isoform usage testing. Differential iso-
form usage refers to the changes of RNA-isoform expression relative to the
expression of the corresponding gene. The purpose of isoform-specific eQTL
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mapping is to dissect the genetic basis of differential isoform usage. We also
refer to isoform-specific eQTL mapping as splicing QTL mapping or sQTL
mapping. Because isoform abundance cannot be directly measured, transcrip-
tome reconstruction and abundance estimation are necessary steps of sQTL
mapping, and the results of these two steps have non-negligible effect on the
testing of differential isoform usage. Therefore, we review all the three topics.

3.2 Transcriptome Reconstruction

There are two types of methods for the purpose of transcriptome reconstruc-
tion: genome-independent reconstruction and genome-guided reconstruction
[21]. Genome-independent reconstruction methods, such as Velvet [99], ABySS
[5], and trans-ABySS [61], directly assemble the RNA-seq reads into transcripts
without using a reference genome. This approach is, obviously, the only choice
for organisms without a reference genome. However, when transcriptome an-
notation is available, the genome-guided reconstruction methods, which first
map all the RNA-seq reads to the reference genome and then assemble over-
lapping reads into transcripts, are more accurate and computationally much
more efficient. Mapping RNA-seq reads to the reference genome may involve
the detection of de novo exons and exon junctions by TopHat [79], SpliceMap
[3], MapSplice [87], SplitSeek [1], G-Mo.R-Se [15], QPALMA [13], or other soft-
ware. Two genome-guided reconstruction methods, Cufflinks [80] and Scrip-
ture [27], have been developed. Both methods build assembly graphs (using
different approaches though) in which one path in the graph corresponds to
an RNA isoform. Cufflinks reports a minimal set of isoforms by choosing a
minimal set of paths while Scripture reports all compatible isoforms.

3.3 Isoform Abundance Estimation

We group the methods for isoform abundance estimation into four categories
(Table 1). The methods in the first category (e.g., ALEXA-seq [26] and NEUMA
[38]) estimate isoform abundance using the sequence reads that are unique to
an isoform. This approach misses the information embedded in the “isoform
multi-reads” [39], i.e., reads that are compatible with more than one isoform.

The methods in the other three categories use different approaches to prob-
abilistically assign the “isoform multi-reads” to certain isoforms and then esti-
mate isoform abundance. Methods in the second category employ a generative
model to describe the stochastic process in RNA-seq experiments. The term
“generative model” means that the process of generating each read is mod-
eled so that the likelihood is a product of the likelihoods from each read. For
example, following equation (14) of Pachter (2011) [53] (with some changes of
notation so that the notations are consistent in this paper), the likelihood of
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N single-end reads from K isoforms is

L(θ) =

N∏
s=1

(
K∑
k=1

c̃s,k
αk

l̃k

)
, (3)

where l̃k is the effective length (i.e., the number of positions where a read can
start) of the k-th isoform, c̃s,k=1 if read s is compatible with the k-th isoform
and 0 otherwise, and αk is the probability of selecting a read from the k-th
isoform. The probability αk can be formulated as αk = θk l̃k/

∑K
k′=1 θk′ l̃k′ ,

where θk is the relative abundance of the k-th isoform and is the parameter
of interest. Extension to paired-end fragments involves modeling the distance
of the two reads of a paired-end fragment. We skip the details here and refer
interested readers to existing works such as Cufflinks [80,60].

The third category includes methods that build their likelihood functions
by a Poisson model [32,65,59]. Given a known set of isoforms, Jiang and Wong
[32] modeled the fragment count of each locus (either an exon or an exon junc-
tion) by a Poisson distribution, and estimated the expression of each isoform
by Maximum Likelihood Estimation (MLE). Specifically, suppose that there
are K isoforms, and let Nr (1 ≤ r ≤ R) be the number of reads falling into
the r-th region of interest (e.g., an exon or exon-exon junction), the likelihood
function is

L(θ∗) =

R∏
r=1

(
eλrλNr

r

Nr!

)
, (4)

where λr is the expression rate pertaining to the r-th region. Let θ∗k be the
expression rate of the k-th isoform and the parameter of interest. We define
λr = lrw

∑K
k=1 cr,kθ

∗
k and λr,r′ = lr,r′w

∑K
k=1 cr,kcr′,kθ

∗
k, where w is the total

number of sequence reads, lr and lr,r′ are the lengths of the r-th exon and
the junction of the r-th and r′-th exon, respectively, and cr,k = 1 if the r-th
region is compatible with the k-th isoform and 0 otherwise. Note that it is
more appropriate to use the effective length instead of the actual length of ex-
ons and exon-exon junctions in the above likelihood [53]. The expression of an
isoform could be zero or close to zero, which is the boundary of the parameter
space and thus leads to unreliable MLE. Jiang and Wong [32] addressed this
problem by importance sampling guided by MLE. Salzman et al. [65] extended
the method of Jiang and Wong [32] to work with paired-end sequencing data.
Richard et al. [59] developed a similar MLE approach for isoform abundance
estimation of known isoforms using only the reads on exons.

The likelihoods employed by the methods in the second and third cat-
egories are different. The multinomial generative model pertains to the in-
dividual single-end read or paired-end fragment, whereas the Poisson model
pertains to the read count of a region. However, the two likelihoods result in
an identical estimate of isoform abundance [53], following from the equivalence
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Table 1 Statistical/computational methods for isoform abundance estimation. The Input
column is empty for some of the methods because there is no specific requirement for the
input data.

Methods/Package Notes Input

ALEXA-seq [26] Average coverage of exons and Customized annotation
exon junctions unique to an isoform database

NEUMA [38] Normalized number of reads uniquely
mapped to an isoform

Xing, Yu et al. [96] Multinomial likelihood
generative model

Cufflinks [80,60] Multinomial likelihood Isoforms assembled by
generative model Cufflinks

RESM [39] Multinomial likelihood
generative model

MISO [34] Bayesian method using
generative model

Jiang, Salzman, Poisson model Isoforms annotations
and Wong [32,65] and importance sampling

POEM [59] Poisson model Isoforms annotations
and EM alogirithm

NSMAP [93] Penalized Poisson regression All possible isoforms
motivated from a Bayesian setup given exon annotation

rQuant [6] Penalized least squares Isoforms annotations

Isolasso [42] Penalized least squares isoforms by Scripture [27]
with further filtering

SLIDE [40] Penalized least squares

between the multinomial and Poisson model [37].

The fourth category includes methods based on penalized Poisson regres-
sion [93] or penalized least squares [6,42,40]. These methods can simulta-
neously construct isoforms and estimate isoform abundance. For example,
isoLasso [42] first identifies candidate isoforms for each gene using a modi-
fied connectivity-graph approach of Scripture [27]. Since Scripture reports all
isoforms compatible with the observed data, it is expected that some candi-
date isoforms may not be expressed. Thus, one needs to simultaneously select
the expressed isoforms and estimate their abundance. Towards this end, iso-
Lasso[42] minimizes the objective function of penalized least squares

R∑
r=1

(
Nr
lr
−

K∑
k=1

cr,kθ
∗∗
k

)2

+ λ

K∑
k=1

|θ∗∗k |, (5)
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where Nr is the number of sequence fragments in the r-th region (e.g., exon
or exon-exon junction), lr is the length of the r-th region, cr,k = 1 if the r-th
region is compatible with the k-th isoform, and θ∗∗k is the expression rate of the

k-th isoform and is the parameter of interest. The Lasso penalty λ
∑K
k=1 |θ∗∗k |

can penalize some of θ∗∗k ’s to be 0, hence achieving the goal of isoform selection
[78]. The authors of isoLasso pointed out that it is more appropriate to use the
effective length instead of the actual length of exons and exon-exon junctions
in their objective function.

Recent studies have shown that it is important to consider positional bias
and sequence bias for the purpose of transcript abundance estimation [28,39,
41,92,60]. Positional bias refers to the observation that the sequence reads
are not uniformly distributed along the transcript. Sequence bias refers to the
non-randomness of the sequences around the beginning and the end of each
singe-end sequence read or paired-end sequence fragment; for examples, reads
may be more likely to start at a position of higher GC content. Methods have
been developed to account for such biases for both the multinomial generative
model [39,60] and the Poisson model [41,92]. Another approach is to reweight
each sequence read by its first heptamer (seven bases), and instead of counting
the number of reads mapped to a genomic region, one adds up the weight of
the reads mapped to the region, and then the sums of weight are used as
counts for downstream analyses [28].

3.4 Differential Isoform Usage Testing

Recall that differential isoform usage means the changes of the relative isoform
expression with respect to the expression of the gene. Testing differential iso-
form usage is related to but different from testing differential expression. Nev-
ertheless, some conclusions from testing differential expression are instructive
for testing differential isoform usage, and are stated in this paragraph. First,
for the purpose of testing differential expression, one can apply transformation
such as the normal quantile transformation to read count data and then treat
the transformed measurements as normally distributed random variables. Such
transformation loses information, and it is more appropriate to keep the dis-
crete feature of the RNA-seq data. Several methods have been developed for
differential expression testing by modeling read counts via a discrete distribu-
tion, such as a Poisson distribution when there is no over-dispersion [88], a
negative binomial distribution [2,29,62] or a generalized Poisson distribution
[73] when there is over-dispersion, which is often true for expression data across
biological replicates. One can also apply a two-stage approach to first test for
over-dispersion and then apply the appropriate modeling strategy based on
the conclusion of the over-dispersion test [4].

So far, only a few methods have been developed for testing differential iso-
form usage. Trapnell et al. [80] employed the square-root of Jensen-Shannon
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Divergence (JSD) as a test statistic and they derived its asymptotic distribu-
tion. Specifically, let p(1), ..., p(M) be the distributions of isoform abundance

under M conditions, where p(m) = (p
(m)
1 , ..., p

(m)
K )T is a vector of length K

such that p
(m)
k is the relative abundance of the k-th isoform under condition

m. We have
∑K
k=1 p

(m)
k = 1, m = 1, . . . ,M . Then JSD is defined as

JS(p(1), ...,p(M)) = H

(
p(1) + ...+ p(M)

M

)
−
∑M
m=1H(p(m))

M
, (6)

where H(p(m)) = −
∑K
k=1 p

(m)
k log(p

(m)
k ) is the entropy across the K isoforms.

The test statistic, denoted by f(p(1), ...,p(M)) =
√
JS(p(1), ...,p(M)), asymp-

totically follows a normal distribution with mean 0 and variance (∇f)TΣ(∇f),

where (∇f) is the partial derivative of f(p(1), ...,p(M)) with respect to p
(m)
k ,

and Σ is the block-diagonal variance-covariance matrix with one block for
each p(m).

Singh et al. [70] modeled the transcriptome of one condition by a splice
graph, which is constructed such that one edge corresponds to a transcribed
interval or a spliced site. Then they proposed a flow difference metric (FDM)
to measure the isoform usage difference between two conditions by the differ-
ence between the two corresponding splice graphs. They showed that FDM is
correlated with JSD and can be used as a classifier for JSD. They developed
a non-parametric resampling method to obtain the null distribution of FDM
under the null hypothesis of no differential isoform usage, and used this null
distribution to test for differential isoform usage.

Although it is important to consider positional bias and sequence bias
for isoform abundance estimation as we discussed before, it is a question of
whether modeling such bias is necessary for differential isoform usage testing.
Suppose that there is a positional bias such that there is higher read depth in
the 3’ end of the gene. Without modeling the positional bias, the abundance of
the isoforms closer to the 3’ end of the gene may be over-estimated. However,
as long as such bias is consistent across all the samples, it does not lead to a
false positive result for differential isoform usage testing.

3.5 Differential Isoform Expression

In addition to isoform usage testing, one can also consider differential expres-
sion of each isoform. Notably, differential isoform expression testing is different
from isoform usage testing. The former produces one p-value for each isoform
while the latter produces one p-value for multiple isoforms of one gene. Cuf-
flinks [80] tests differential expression of a transcript under two conditions
by assessing the following test statistic: log(FPKM1/FPKM2), where FPKMi is the
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FPKM (Fragments Per Kilo-base of the transcript and per Million RNA-seq
fragments of the sample) of the transcript under condition i, and i = 1 or 2.
Using the conclusion Var[log(X)] ≈ Var(X)/E(X)2, they derived a test statistic

log(FPKM1/FPKM2)√
Var(FPKM1)/E(FPKM1)2 + Var(FPKM2)/E(FPKM2)2

,

which follows standard normal distribution under null hypothesis of no dif-
ferential expression. This testing approach did not consider the variation of
FPKM estimates due to isoform selection.

An alternative method named BASIS (Bayesian Analysis of Splicing Iso-
formS) [102] directly compares RNA isoform expression without an interme-
diate isoform selection step. Specifically, a hierarchical Bayesian model is em-
ployed to model the expression coverage difference at one locus between two
conditions as a linear combination of the isoform expression differences plus an
error term. Because the variance of the error term is dependent on the mean
expression level, the error terms of all loci across the genome are grouped into
100 bins by the total coverage of the loci, and modeled separately.

3.6 Splicing QTL (sQTL) Mapping

The problem of sQTL mapping can be considered as a special case of the
problem of differential isoform usage testing. To the best of our knowledge, no
existing method is able to directly assess the association between the isoform
usage and a quantitative covariate, which can be the additive coding of a SNP
or the copy number calls at a genomic locus. The testing of differential isoform
usage against a quantitative covariate is a very interesting direction for future
development, not only for sQTL mapping but also for many other problems
of differential isoform usage testing, for example, to assess the association be-
tween differential isoform usage and age.

The other potential research direction is to combine the eQTL mapping
of total transcription abundance of a gene with the sQTL mapping of rela-
tive transcription abundance (e.g., isoform usage), because genetic variation
is very likely to affect both the total expression of a gene and the relative ex-
pression of its isoforms. If this gene-level testing indicate significant differential
expression, either for total expression or for isoform usage, one can further test
differential expression of each isoform. We expect that this two-step approach
of gene-level testing followed by isoform-level testing is more powerful than
directly testing for all possible isoform due to the reduction of the number of
tests, and hence the reduced burden of multiple testing correction.

The third future direction is simultaneous allele-specific and isoform-specific
eQTL mapping, which can provide unprecedented details of the genetic ba-
sis of transcription regulation. A pioneer work in this direction, a haplotype
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Table 2 An example illustrating that one can obtain more accurate allele-specific expression
estimates at RNA isoform level. Assume this gene has two isoforms. Isoform 1 includes exons
1 and 3, and isoform 2 includes exons 1, 2, and 3. The columns Exon1, Exon2, and Exon3
show the number of reads mapped to the corresponding exons. Columns FPKMisoform and
FPKMgene show FPKM estimates at isoform and gene level, respectively.

Allele Isoform Exon 1 Exon 2 Exon 3 FPKMisoform FPKMgene

Both
isoform 1 100 0 100 1

1.67/2
isoform 2 100 100 100 1

Paternal Allele
isoform 1 30 0 30 0.3

0.90/1
isoform 2 70 70 70 0.7

Maternal Allele
isoform 1 70 0 70 0.7

0.77/1
isoform 2 30 30 30 0.3

and isoform-specific expression estimation method, has been reported [81]. In
fact, joint analysis of allele-specific expression and isoform-specific expression
is necessary to obtain more precise conclusions. We illustrate this point by an
example shown in Table 2. Suppose there is a hypothetical gene with three
exons of effective length 100bp, and to simplify the discussion, we ignore the
reads overlapping with more than one exon. Here effective length of an exon is
defined as the number of base pairs where an RNA-seq fragment can be sam-
pled [80]. Further assume this gene has two isoforms: one includes exons 1 and
3, and the other includes exons 1, 2, and 3. Isoform 1 has higher expression
in paternal allele than maternal allele while isoform 2 has higher expression
in maternal allele than paternal allele. If one ignores isoform expression and
naively estimate FPKM at gene level, the FPKM estimates for both alleles,
paternal allele, and maternal allele are 500/300 = 1.67, (30 + 30 + 70 + 70 +
70)/300 = 0.9, and (70 + 70 + 30 + 30 + 30)/300 = 0.77, respectively. How-
ever, given isoform configuration, the FPKM estimates at gene level for both
alleles, paternal allele, and maternal allele are 500/(0.5×200 + 0.5×300) = 2,
(30 + 30 + 70 + 70 + 70)/(0.3×200 + 0.7×300) = 1, and (70 + 70 + 30 +
30 + 30)/(0.7×200 + 0.3×300) = 1, respectively. Therefore, ignoring isoform
level expression leads to the conclusion that there is allelic imbalance of gene
expression, while a more accurate explanation is that there is allele-specific
isoform usage.

4 Discussion and Conclusion

Network analysis has been employed in eQTL studies to jointly mapping eQTL
of multiple transcripts [56,98]. It involves simultaneous estimation of residual
covariance/precision matrix and the regression coefficient matrix. It is interest-
ing to apply similar approaches for eQTL mapping using RNA-seq data. How-
ever, while discrete distributions such as beta-binomial or negative-binomial
distributions are appropriate choices to model the RNA-seq count data for each
gene. It is much more challenging to study the joint distribution of multiple
genes due to the difficulty of studying multivariate beta-binomial or negative-
binomial distributions. This is an interesting direction that warrants further
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developments of appropriate statistical methods.

We would like conclude this paper by pointing out that the developers of
statistical/computational methods for eQTL mapping should not only focus on
exploiting each bit of information from RNA-seq to improve statistical power.
One should put even more emphasis on the scientific questions that can be
answered by developing a new method. For example, using allele-specific and
isoform-specific eQTL to dissect the genetic/genomic basis of complex diseases.
Recent genome-wide association studies (GWAS) found that most common ge-
netic variants can explain at most a few percents of the variance of a complex
disease. This has raised some doubts on the efficacy of genetic/genomic ap-
proach for understanding complex diseases and developing treatments. eQTL
studies can provide more information than GWAS because a complex disease
often has tighter correlations with gene expression variations than genetic vari-
ants. This is in turn due to at least two reasons. First, by the central dogma
of DNA → RNA → Protein, RNA is closer to disease than DNA in terms
of signal transmission from DNA to phenotype. Second, the effects of more
than one genetic variant may be accumulated on a particular transcript. On
the other hand, unlike DNA data, which is stable, RNA data is noisier, e.g.,
RNA expression varies across tissues and development stages. RNA-seq pro-
vides more information of gene expression than expression arrays, together
with more variation, e.g., the gene expression may vary in allele-specific man-
ner or in isoform level. By combining DNA and RNA data in eQTL analysis,
we may exploit both the stability of DNA data and the informativeness of
RNA data for the purpose of understanding complex diseases.
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