(LECTURE #2 ON REGRESSION ANALYSIS)

FORMAL INFERENCE - ASSUMPTIONS

Lecture #1 considered regression descriptively.

We discussed the simple linear model Y = (0+ (1X + E,

showed how it could be fitted using least squares, 

and related it to correlation.

We assumed only “existence” – that Yi | Xi has a mean.

Now suppose we want to test a hypothesis 


e.g., that (1 =  0, or that µ[Y] = 3 for X = 10

or obtain a confidence interval for some parameter,


such as (0 or (1, or even   ((0 + 3(1).

This means finding P-values or confidence coefficients

(which are probabilities),  so we need to make some assumptions.  Specifically, we shall assume:

A)  INDEPENDENCE:  Y1, ..., Yn, given the Xs,


are mutually independent (or, equivalently,


E1, ..., En are mutually independent).

B)  NORMALITY:  Yi|Xi is normally distributed


(with    mean       µi =    µ[Yi|Xi]    and  




variance  
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MAXIMUM LIKELIHOOD ESTIMATES
The distribution of  Yi  given Xi  is  N{(0+(1Xi, (2}.

Hence the likelihood function of the sample of Ys is
	L((0, (1, ()   =
	  n

(
i=1
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We want to find the (0, (1, and ( that maximize this.


ln[L] =
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No matter what ( is, we maximize ln[L] by choosing

(0 and (1 to minimize the sum of squares: i.e., the maximum likelihood estimates of (0 and (1 are the same as the least-squares estimates. The minimum sum of squares is then (R2 and we have


ln[L] = 
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To estimate ( we set


d ln[L] / d (  =  (
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Solving for ( produces (2 =  (R2/n,
but it can be shown that this is a biased estimate,

so we replace it by the unbiased estimate
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DISTRIBUTION OF ESTIMATED VARIANCE

Recall that for Y1, ..., Yn  independent  N{µ, (2}



( i.e.,  Yi  ~  N{µ, (2} )

we have


µ[
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 By a similar (but more complicated) argument, if



Yi | Xi  ~  N{(0 + (1Xi, (2}

then


µ[
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There are  n-2  degrees of freedom, where the 2
corresponds to 2 parameters being estimated.

For Galton's data,  
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LINEAR  FUNCTIONS  OF  VARIABLES

Given variables Y1, ..., Yn and constants h1, ..., hn, 

the variable




Z = h1Y1+ ... + hnYn  =  ( hiYi
is called a “linear function”, or “linear combination”,

of the Ys.

1)
If Yi has mean µi for i = 1, ..., n,


then the expectation of  Z  is





µ[Z]  =  ( hi µi .

2)
If Yi has variance 
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and  Yi and Yj have correlation (ij,

then the variance of  Z  is
	(2[Z] =  (
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(If the Ys are uncorrelated,

the second summation vanishes.)

3)
If the Ys are independent and normally distributed,


then Z is normally distributed.

DISTRIBUTION  OF  ESTIMATED  SLOPE
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= (hiYi    where   hi  =  
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Thus  
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=  (hi ((0  +  (1Xi)



=  (0 (hi  +  (1(hiXi   =  (1
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So
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(implications for design)

INFERENCE  ON  THE  SLOPE

We have found that
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Thus, to test the hypothesis that (1 =  (say)  
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To place a (100–()% confidence interval on (1:

 
let 
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and the interval is  
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EXAMPLES:  GALTON'S DATA

1)
Are sons' heights related to  (or “correlated with”) fathers' heights?  Test H0: (1 = 0.
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Taking this as t(10), the 2-sided P-value is 0.0108 .

2)
Test H0: (1 = 1.
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Taking this also as t(10), the 2-sided P-value is .0064 

3)  What values of  (1 would be accepted at 5%?  

The two-sided 5% critical value for t(10) is  t = 2.228,
so the margin of error for  (1  is

MOE =  
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The confidence interval is  .476 ( .340  or  (.136, .816).

Interpretation:  We are 95% confident that the slope is between .136 and .816: i.e., if a father is 1" taller than another father, his eldest son will be between .136 and .816 inches taller than the other father's eldest son.

Or, values between .136 and .816 would be accepted

at level 5% if hypothesized for (1.

DISTRIBUTION  OF  THE  VALUE  OF  
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This is a linear function of the Ys.  The Ys are normal and independent so the linear function is normal.
Clearly   µ[ 
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INFERENCE  ON  THE  VALUE  OF  (0  +  (1X

The preceding result allows us to state 

a confidence interval for (0  +  (1X,  

i.e., for the mean response Y at any value of X.

	We have  
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and the interval is  
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EXAMPLE:  Galton's data

Suppose we want a 95% confidence interval for
the mean height of sons whose fathers are 70" tall.

The estimated mean is  35.824 + .476 ( 70  =  69.14"

The MOE is  2.228
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The interval is  69.14" ( 1.22",  or  (67.92", 70.36")

The special case where X = 0


yields inference on the intercept.

(For Galton's data, of course, this is not meaningful.)

CONFIDENCE  BAND

The curves formed by the intervals 


at various values of X 


form a “confidence band” 


for the regression function.
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PREDICTION

Suppose we want to predict the value of Y

for a NEW observation at some value of X.

The true value will be           Y = (0  +  (1X + E .

The predicted value will be  
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   (
Note the extra variation in the prediction,
added by the new observation.

A “prediction interval” can then be found, 

like the confidence interval for the mean response, and a corresponding “prediction band”,

which will be much wider than the confidence band. 

GALTON'S DATA:  PREDICTION  BANDS 

AND  CONFIDENCE  BANDS  COMPARED
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If the assumptions are satisfied,

then, for any specified value of X,

the (narrow) confidence band includes
the value of the regression function

with 95% probability,
while the (wide) prediction band will include

95% of all new observations.
COMPUTER OUTPUT (“SAS”) with 

ANALYSIS OF VARIANCE TABLE

The REG Procedure

Model: MODEL1

Dependent Variable: SON 

                Analysis of Variance

                     Sum of      Mean

Source           DF  Squares   Square  F Value  Pr > F

Model             1  19.21391 19.21391  9.75    0.0108

Error            10  19.70276  1.97028  

Corrected Total  11  38.91667            

Root MSE              1.40367    R-Square     0.4937

Dependent Mean       67.58333    Adj R-Sq     0.4431

Coeff Var             2.07694                       

               Parameter Estimates

               Parameter  Standard

Variable   DF  Estimate      Error  t Value  Pr > |t|

Intercept   1  35.82480   10.17795    3.52   0.0055

FATHER      1   0.47638    0.15255    3.12   0.0108
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