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SUMMARY

For small samples of Gaussian repeated measures with missing data, Barton and Cramer

(1989) recommended using the EM algorithm for estimation and reducing the degrees of

freedom for an analog of Rao's  approximation to Wilks' test.  Computer simulations led to-

the conclusion that the modified test was slightly conservative for total sample size of

5 ~ �� 5 � ¸��Á ��¹.  Here we consider additional methods and smaller sample sizes, .

We describe analogs of the Pillai-Bartlett trace, Hotelling-Lawley trace and Geisser-

Greenhouse corrected univariate tests which allow for missing data.  Eleven sample size

adjustments were examined which replace  by some function of the numbers of non-5

missing pairs of responses in computing error degrees of freedom.

Overall, simulation results allowed concluding that an adjusted test can always control

test size at or below the nominal rate, even with as few as 12 observations and up to 10%

missing data.  The choice of method varies with the test statistic.  Replacing  by the mean5

number of non-missing responses per variable works best for the Geisser-Greenhouse test.

The Pillai-Bartlett test requires the stronger adjustment of replacing  by the harmonic mean5

number of For Wilks' and Hotelling-Lawley, an even morenon-missing pairs of responses.  

aggressive adjustment . based on the minimum number of non-missing pairs must be used

1. Introduction

1.1 Motivation

Repeated measurements can be distinct variables, or a single variable measured at several

points in time, with the spacing consistent across subjects.  For ease of presentation, call the

experimental unit a “subject” and the metameter on which the measurements are indexed

“time”.  Traditional linear models are particularly useful if the responses are at least

approximately Gaussian and can be explained by some linear function of predictors.  When

each subject is observed at the same  times and no missing observations, closed-form�
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maximum likelihood (ML) estimates of the model parameters are often available.  Often,

especially in clinical trials, the response is not observed at all time points for every subject.

A large amount of research has been directed at estimation for linear repeated measures

models with missing data.  These appear to work well in both large and small samples.  In

contrast, much less effort has been directed towards methods for inference.   Various

asymptotic test statistics work well in large samples.  However, in small samples the

available methods for inference may work very poorly.  In particular, the methods produce

inflated type I error rates in small samples (Barton and Cramer, 1989; Schluchter and

Elashoff, 1990).

We seek to develop hypothesis tests for Gaussian repeated measures with missing data,

accurate in small samples.  In doing so, we restrict attention to a particular range of studies.

We “missing at random” (MAR; Rubin, 1976).assume that the missing data elements are 

1.2 General Strategies for the Analysis of Repeated Measures Designs

Models in which the expected value of the response vector equals a linear function of the

parameters have traditionally been described as (general) linear models.  Most often, one of

three strategies is used for   the multivariate analysis oflinear models with repeated measures:

variance (MANOVA) approach, the univariate approach to repeated measures, or mixed

model analysis.  All three models account for the dependencies among the repeated measures,

but differ in the special form assumed for the covariance matrix within subjects, .'

See Muller, LaVange, Ramey and Ramey (1992) for an overview of the multivariate and

univariate approaches to repeated measures ANOVA.  They described the assumptions

behind the methods as well as the most widely used tests for both approaches.  For the sake

of brevity, the information in that article will be assumed throughout.

The mixed model has long been used for the analysis of continuous data, especially for

missing and mistimed data.  By virtue of modeling the subject as a random component, the
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mixed model can encompass a broad range of covariance structures.  In this paper, we will

compare existing inference methods for all three approaches to new ones.

Using the terminology of Rubin (1976), missing atmissing responses are said to be 

random (MAR) if missingness of a particular response does not depend on its unobserved

value, but can depend on the covariates or any of the observed responses.  Likelihood-based

estimation methods assume that the data are MAR.

Alternatively, one can use the quasi-likelihood approach of Liang and Zeger (1986) by

solving the generalized estimating equations (GEE) to obtain estimates of the regression

parameters.  Park (1993) compared the GEE approach to the ML approach for multivariate

normal outcomes.  He showed that with no missing data and an unstructured covariance

matrix that the GEE and ML score equations are equivalent and lead to the same estimates of

expected value and covariance parameters.  With missing observations, however, the

equivalence fails.  For data missing completely at random (MCAR, Rubin, 1976), the GEE

solution produces consistent estimators.  Three weaknesses, however, make GEE less

desirable than ML estimation in the missing data setting.  First, the GEE estimate of the

working covariance matrix may not always be positive definite, while the ML estimate from

the EM algorithm is guaranteed to be positive definite(Dempster, Laird and Rubin, 1977) 

(Laird, Lange and Stram, 1987).  Second, simulation studies by Stiger, Kosinski, Barnhart

and Kleinbaum ( Qu, Piedmonte, and Williams1997), (1994), Park (1993), and Emrich and 

Piedmont (1992) allow concluding that ML estimators perform better in small samples than

GEE estimators.  The former tend to have less bias, smaller mean squared errors and more

accurate .  Third, under misspecification of the covariance, the GEE estimators willtest size

only be consistent provided that the missing observations are MCAR.  ML procedures give 

unbiased estimates under the weaker MAR assumption.  The limitations of the GEE

procedure in small samples, combined with the focus on Gaussian data, makes ML

estimation more attractive and therefore the focus of this paper.
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2. Known Methods For Estimation And Inference

2.1 Complete Data

The repeated measures model can be represented as a special case of the general linear

multivariate model (GLMM).  See Muller . (1992), Davidson (1972), and O'Brien andet al

Kaiser (1985) for further discussion.  Suppose that the responses for subject �

( ) are measured at  times (the same for all subjects). Specify the GLMM as� � �ÁÃ Á5 �$ %  

@ ?)~ b_, (2.1)

with ), ,@ ? the observed matrix of random observations (  the design matrix (5 d � d �5

fixed and known, conditional upon having chosen the subjects) and ) the fixed and

unknown parameters ( ).   .� d � Indicate the  row of as row   Assuming that� ~th ? ? ?� � !
row  is , hypothesis (GLH)�² Á, �³ 5 ² ³� ' we can test the general linear 

/ /�:  :  # # # #~ £*)< ~ o o  versus  .A (2.2)

Each row of   defines a between-subject contrast and each column of  * <²� d �³ ²� d �³

defines a within-subjects contrast.  are based onDefine ll tests of  �, ~ 5 c ² ³rank .  A? /�

) ? ? ? @V ~ ² ³ ÁZ c Z (2.3)

#V *)<~ ÁV (2.4)

/ *V ~ ² c ³ ´ c ³V V# # # #� �
Z ² ³ µ ²? ? *Z c Z c� , (2.5)

and

, < @ ?) @ ?) <V ~ ² c ³ ² c ³ ÀV VZ Z (2.6)

/ ,V V >²�Á Á ³ >² ³ and  have Wishart distributions  and  respectively, with' + 'i i�,Á

+ # # # # '~ ² c ³ ´ c ³ À� �
Z c�

i*² ³ µ ²? ? *Z c Z c� (2.7)

Let  indicate the rank of  and hence  ~ �Á � V V Vmin ! / /,
c�

.
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The common multivariate tests may be constructed using the eigenvalues  of²� ÁÃ Á � ³1  

/,V Vc�

�~�

 

�
c�.  Specifically, for Wilks' Lambda , for Pillai-Bartlett trace> ~ � b �� !

= ~ � � b � <�  !
�~�

 

� �
c�, for Hotelling-Lawley trace , and for Roy's largest root~ ��

�~�

 

�

9 ~ ²� ³  � �  � �max � .  When  (or  for Wilks'), closed form expressions for the

distributions of these test statistics are not available and approximations are used (§2.2,

Muller, . 1992).  In general, no uniformly most powerful test exists.  Hence the optimalet al

choice depends on the alternative hypothesis.  See Olson (1974, 1976, 1979), Anderson

(1984, pp. 330-333), and Muller, . (1992) for detailed discussions.  Concerns aboutet al

robustness and power led to not considering Roy's test any further.

The test statistics , , and  can be accurately approximated by an > = < -  random variable.

Rao's (1973; also detailed in  approximation for Muller  1992)  works well, even inet. al., >

very small samples.  Although widely used in current statistical packages, Pillai's (1954) -

approximation for  may be very conservative in small samples.  Muller (1998) developed=

an  approximation for  that provides substantially better accuracy.  Hence Muller's- =

approximation will be used, with , , with � �� � , !  != ~ 2�� = ~ 2 h  ² b  c �³�

2 ~
�  ² b  c �³² b � b �³² b � c �³

 ² b �³ ² b � c �³
  .

� � �

� � �

, , ,

, , ,@ A (2. )8

McKeon (1974) provided a slightly better  approximation than the more widely used Pillai--

Sampson approximation for the Hotelling-Lawley statistic.  Write the McKeon

approximation

- ~ Á
²<°�³°²��³

�° ²< ³�2
(2. )9

with � ��
Z²< ³ ~ �� ²< ³ ~ ²� b �� b �³�, ,2

� ~ Á
c ²�� b �³ b �²� b �³

²� b � b �³ c ²� b �� b � c �³
Z

�

�

� �

�
, ,

,

(2. )10
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and

� ~ À
²< ³ c �

c � c �

�2

�,
(2. )11

See Muller and Barton (1989, 1991) or Muller  (1992) for details of the computationet al.

and approximation of the distribution of the various tests for the “univariate” approach to

repeated measures.  Geisser-Greenhouse (GG)Muller and Barton (1989) suggested that the 

test type I error rate with excellent power.provides the best compromise in controlling 

Hence only the GG test statistic will be examined here.

2.2 Data Missing at Random

For the GLMM, both ML and REML estimation methods have been extensively investigated

for MAR data.  For a general review, see Little and Rubin (1986, chapters 7-10).  For some

special case patterns of missing data, such as monotone missing data, the likelihood

equations have a closed form solution (Rubin, 1974).  For arbitrary missing data patterns, the

solution must be obtained iteratively.  The computational efficiency and simplicity of the EM

algorithm (Orchard and Woodbury, 1972; Beale and Little, 1975; Dempster, Laird and Rubin,

1977) make it an attractive choice for ML estimation in the setting of interest.  Barton and

Cramer's experience with the method for the application at hand also strongly supports the

choice.  The best algorithm for more general models is not as obvious.  See for example,

Mensah, Elswick and Chinchilli (1993) or Callahan and Harville (1990).

Except in special cases, no known method exists for providing accurate and efficient

inference in small multivariate normal samples with missing data.  Hypothesis tests

constructed from complete observations only, while accurate in small samples, are

inefficient.  A number of approximate methods have been proposed for the problem of testing

equality of means for a bivariate normal sample with data missing on one variable (Morrison,

1973; and Little, 1976 and 1988).
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Barton and Cramer (1989) suggested an appealing technique for testing the general linear

hypothesis in a GLMM with an arbitrary pattern of missing data.  The approach involves

using the EM algorithm for ML estimation modifying Rao's  approximation to Wilks', and -

test, , with adjusted error degrees of freedom.  Let  indicate the number of-> 5��Z

observations for which both  and @ @�� ��Z , for , have non-missing values.  Note� � �Ã5$ %
that 5 ��� equals the number of cases observed for the  response.  All adjustmentsth

considered by Barton and Cramer, and in this paper, involve replacing  by  in5 5i

�, ~ c5 ² ³ 5 ¸5 ¹rank .  In all cases  equals a function only of .  ? i ��Z For samples of size 40

and up to 20% missing data, test statistics with degrees of freedom based on the naive choice

5 ~ 5i  produced inflated type I error rates ranging from 0.10 to 0.23 assuming a nominal

rate of 0.05.  In contrast, choosing  the number of complete cases gave very5i as  

conservative rates (0.004-0.014).  The best choice was the average number of non-missing

pairs of responses.  An analog of Wilks' test based on this adjustment produced acceptable

test sizes across all simulated conditions.

The mixed model is often used for multivariate data with some missing observations.  Let

&� � be an  vector of measurements for the  subject, and .  In the mixed ! �5 � 5 ~ 5d � th
b �

�~�

5

model, is modeled as& & &b �
Z Z

5
Z~ ÁÃ Á" #  

& ? A� �b b b~ b b� , (2.12)

with ? A and  the known design matrices for the fixed and random effects respectively, and

the  the vector of unknown random effects.  � �The key assumptions for inference are that 

and  are independent and multivariate Gaussian� 4.  Define vec  as the vector created by !
stacking the columns of .  Also let 4 ( ) )n ~ �$ %��  indicate the (left) Kronecker

product.  For the cases of interest, the mixed model may be written so that vec , with� ~  !)Z

) @ ?) ? ? 0 from the GLMM, .  For complete data .  For missing data~ b ~ n_ b �

merely delete each row corresponding to a missing response.  , of dimension , be theLet '� ��
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sub-matrix of  with rows and columns corresponding to data observed for subject .  Let' �

$ ' ' '~ ÁÃDg  indicate the block-diagonal matrix created by placing  in the upper !� 5 �

left diagonal, .  Then .   and  typicallyetc � �b 5~ ÁD
b
 !$ � $Likelihood-based estimation of 

requires iterative methods.  The software used here (SAS , PROC MIXED) employs a®

method of Lindstrom and Bates (1988).

Exact methods are not available to test hypotheses about .  The approximate, large-�

sample test statistics can be unreliable in small samples.  Schluchter and Elashoff (1990, §6)

examined the test size of various ML Wald-type statistics.  Their small sample simulation

results led them to suggest approximating a modified Wald statistic by an  distribution with-

denominator degrees of freedom based on the number of complete cases. A simple   ��

approximation to the LR statistic (Hocking, 1985, §8.3.1) proves unreliable in small samples

(Woolson, Leeper and Clarke, 1978; Woolson and Leeper, 1980; and Leeper and Woolson,

1982).  The version of PROC MIXED studied here used (SAS, 1997, p644):

- ~

V VV� $ �
Z c� c6 7? ?

*

Z
b b

rank
, ! (2.13)

with numerator degrees of freedom equal to .  Although several approximations arerank !*

available for the (see SAS, 1997, page 607)denominator degrees of freedom , only the

Satterthwaite approximation was considered in this paper.

3. New Tests For Data Missing At Random

The success of the Barton and Cramer strategy encouraged us to consider a number of

generalizations.  First, the approach will be applied to other test statistics.  Second, some

additional functions of the sample sizes merit consideration.  Third, even smaller sample

sizes will be studied.  In all cases the EM algorithm will be used for estimation.

In addition to , the ,  and  tests may be applied to missing data.  First, use the> < = ..

EM algorithm to compute maximum likelihood estimates of  and .  Second, use the) '
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estimates to compute an analog of , as well as analogs of  ,  and  statistics./,V V < = ..
c�

Third, compute  approximations, changing only the error degrees of freedom by replacing-

5 5 with some form of .i

Overall, eleven forms for  .  They are5i will be examined for each of four test statistics

listed in Table 1 in rank order from smallest to largest, with the exception that  can be5i�

either less than or greater than  (and hence  and ,).  In all cases .5 5 5 5°5 ¦ �i
 i� i	 i

Consequently, in large samples (as the5 ¦ B � �, with fixed , , and proportion missing) 

choice of  has less and less effect5i .  The form of the results of Rothenberg (which assume a

sequence of local alternatives), as cited in Anderson (1984, §8.6.5) support this position.

4. Numerical Evaluations

4.1 Methods

All simulations involved a small range of research designs.  In all cases, the designs included

1) one within-subject factor with  or  levels, 2) one between-subject factor with 4� ~ � 
 � ~

levels, 3) 12, 24  and 4) 0%, 5% or 10% of the data missing.   No subject's data were5 � ¸ ¹Á

allowed to be completely missing.  The procedure for producing missing data generated data

that are MCAR.  Other factors considered are the relative error variance of response variables

(equal, unequal), and the error correlation structure (medium, high).  See Tables I-II in Barton

and Cramer (1989) for details.  In addition, a third level was added to the correlation structure

factor, which allowed assessing the effect of very low correlation between the responses.  The

structure specified equal correlation  for each pair of responses.  The overall test for !� ~ �À�

the presence of a trend (linear, quadratic or cubic) with respect to the between-subject factor

for each of the response measures was of primary interest Under the null, of course, ..  ) �~

For 5,000 replications and assuming a true type I error rate of 0.05, the 95% confidence

bounds around the type I error rate estimates are approximately 0.006.f
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4.2 Results

On average, higher levels of correlation within subjects were associated with modestly higher

type I error rates.  Since this pattern was consistent only thefor each of the test statistics, 

results for the low and high correlation conditions will be presented.

The empirical type I error rates for the mixed model  statistic are given in Table 2.  The-

results indicate that the test has poor small sample properties, producing inflated type I error

rates, even when none of the data were missing.  For , test sizes increased from5 ~ ��

slightly greater (0.07-0.10) to considerably greater (0.16-0.32) than the nominal 0.05� ~

level as the number of repeated measures increased from 3 to 6.

For the conditions with no missing data, all four univariate and multivariate test statistics

succeeded in (see Table 3).  Thiscontrolling the type I error rate at or below the nominal rate 

illustrates that the sample sizes, while small, are large enough that the approximate  tests-

are essentially unbiased for complete data.  Hence any discrepancy from the desired test size

may be attributed to the influence of missing responses, and not to any inaccuracy in test

approximations for complete data.

Tables 4, 5, 6, and 7 summarize the empirical test sizes for , , , and  for 5% and> < = ..

10% missing data.  All tables give results for tests based on  and 5 ~ 5 5 ~ 5i� �� i��min$ %Z
in order to define bounds on test size.

The EM algorithm failed roughly 90% of the time for the condition with , ,� ~ 
 5 ~ ��

and even 5% missing data.  Estimates are well defined for complete data.  The table cells for

these conditions were left blank.  Not surprisingly, the results indicate that the worst accuracy

tends to occur with more repeated measures, fewer subjects, more missing data and more

correlation within subjects.

From Tables 4 and 5, it is evident that the adjusted  tests - -W and based on < 5i11 give

inflated test sizes, and those based , while for on 5 5i� accurate  were inflated for~ ��

5 ~ ��.  On the other hand, tests based on  5i� controlled test size at or below the nominal



11

rate under all simulated conditions, with the exception of the condition with , � ~ 
 5 ~ ��

and 10% missing data, in which case test size was as high as 0.09.

Table 6 contains test size for modified  tests.  The test based on -= 5i11 provided inflated

type I error rates, and the -adjusted test was conservative.  Test sizes for  were5 5i� i4

extremely accurate, with the exception of the condition with , � ~ 
 5 ~ ��  and 10%

missing data where the type I error rates were approximately 0.1.

The results given in Table 7 suggest that  is a reasonable adjustment function for the5i

- 5 ~ ��.. test.  When , this test is slightly conservative, however this corresponds to the

modest conservatism found when no data are missing (Table 1 in Muller and Barton, 1989).

When , all of the multivariate test statistics are equivalent.  This can ~ ²�Á �³ ~ �min

occur if the rank of the contrast matrix is one ( ) or if the rank of  is one ( ).*  � ~ � < � ~ �

The empirical test sizes shown in Table 8 suggest that when , the best adjustment for� ~ �

the degrees of freedom is based on , while  appears to work well when .5 5 � ~ �i� i�

4.3 Example

Table 9 contains data from a study that examined the effects of choline deprivation on plasma

choline concentration over 35 days, in healthy male subjects (Zeisel, DaCosta, Franklin,

Alexander, Lamont, Sheard and Beiser, 1991).  Subjects were given a standard diet which

included 500 mg/day of choline for one week, and then were randomly assigned into two diet

groups, one that contained choline and one that did not.  During the fifth week of study all

subjects again consumed a diet containing choline.  Blood samples for choline analyses were

obtained before the start of the study (day 0) and on days 7, 14, 21, 28, and 35.  One subject

had data missing for day 35.

A multivariate analysis of covariance model of difference scores allowed testing the

effects of diet on the plasma choline concentration over time, while controlling for treatment

group differences in baseline choline levels.  The null hypothesis of interest is a test of the
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trends by treatment interaction.  This particular design has two treatment groups.  With no

missing data, all multivariate  tests would coincide.  Hence we chose to use a single choice-

of .  The value of the unadjusted (multivariate)  statistic ( ) is 2.77, with 4,5 - 5 ~ 5 ~i i �1

� �2 1~ � - ~ ~8 and  value of 0.10.  For the same hypothesis, unadjusted 2.67, 2.95,..

� �2 1~ � ~ - ~32.4 and 0.065.  Using adjusted (multivariate)  of 45i� give an 2.65  with 

and 7, leading to 0.1443.  The results for using the univariate approach to repeated�2 ~ � ~

measures are 2.95, 31.4 and 0.072.  Both missing data analysis- ~ ~ � ~.. ~  2.58, � �1 2

methods led to a smaller p value than the analysis based on 13 complete cases (  2.00,- ~

� � � �1 2 1~ ~ � ~ - ~ ~ ~ � ~4, 7 and 0.20; 2.40, 2.8, 28.3 and 0.092)... �

5. Conclusions

Conclusion 1. For all tests considered, accuracy decreases with more repeated measures,

fewer subjects, more missing data and more correlation within subjects.

Conclusion 2. The mixed model  statistic used by with- PROC MIXED in SAS  ®

Satterthwaite denominator degrees of freedom gives very liberal test size forapproximated 

5 � ��, even with complete data.

Conclusion 3. For  responses and  subjects, the simple version of the EM algorithm
 ��

used here failed roughly 90% of the time.

Conclusion 4. A degree of freedom adjustment can always control test size at or below

the nominal level, even for conditions as extreme as  and 10% missing data.5 ~ ��

Conclusion 5. The choice of adjustment varies with the test.

5.1 , the , is best for the Wilks' and Hotelling-Lawley tests.5 5i� ��min Z

5.2 , the harmonic mean of , is best for the 5 5i� ��Z Pillai-Bartlett test.

5.3 he Geisser-Greenhouse 5 5i ��, the mean , is best for t  test.

6. Future Research

The simulated data were generated in such a way as to create data that are MCAR.  Hence

MAR data deserve attention in future research.
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Techniques for power analysis, given that test size can be controlled, would be very

useful.  The approach taken here is more intuitive than analytical.  Nevertheless, we believe

we have succeeded in describing an approach to ensure that test size does not exceed the

nominal rate in small, missing data samples for the GLMM.  A more formal approach must

necessarily involve a rather sophisticated attack, due to the complexity of the distributions for

the multivariate test statistics, even with complete data.
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Table 1
Sample Size justments for Ad Error Degrees of Freedom
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number of complete cases
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Table 2
Test Size for Mi 5000 Replications, 0.006)xed Model  (- f

5 � ~ � 


~
£
£

£
£

~
£
£

� ��� �
�

Z % Missing

12 Low 0 .126 .58
12 Low 0 .134 .60
12 High 0 .125 .59

24 Low 0 .069 .16
24 High 0 .074 .16

12 Low 5 .182
12 Low 5 .171
12 High 5 .172

24 Low 5 .080 .21
24 High 5 .081 .23

12 Low 10 .250
12 Low 10 .244
12 High 10 .262

24 Low 10 .086 .303
24 High 10 .095 .322

£
£

~
£
£

£
£
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Table 3
Test Size for GLMM  Tests 5000 Replications, 0.006)- f(0% Missing, 

- - - -

5 � ~ � 
 � 
 � 
 � 


~
£
£

> < = ..

�� �
�� �Z

12 Low .050 .046 .048 .051 .044 .046 .027 .013
12 Low .052 .054 .050 .055 .049 .059 .040 .025
12 High .053 .053 .048 .053 .042 .045 .054 .058

24 Low .049 .051 .050 .050 .048 .049 .041 .039
24 High .053 .049 .051 .048 .051 .049 .049 .053

£
£



20

Table 4
Adjusted Degree of Freedom Test Size for ->

(5%, 10% Missing, 5000 Replications, 0.006)f

5 5 5i� i� i��

5 � ~ � 
 � 
 � 


~
£
£

£

� ��� �
�

Z % Missing

12 Low 5 .029 .073 .145
12 Low 5 .033 .072 .134
12 High 5 .032 .074 .141

24 Low 5 .030 .017 .049 .067 .087 .142
24 High 5 .031 .022 .053 .067 .089 .146

12 Low 10 .047 .148 .345
12 Low 10 .042 .144 .335
12 High 10 .051 .152 .354

24 Low 10 .020 .078 .051 .171 .133 .379
24 High

£

~
£
£

£
£ 10 .025 .094 .062 .199 .158 .411
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Table 5
Adjusted Degree of Freedom Test Size for -<

(5%, 10% Missing, 5000 Replications, 0.006)f
5 5 5i� i� i��

5 � ~ � 
 � 
 � 


~
£
£

£

� ��� �
�

Z % Missing

12 Low 5 .032 .072 .142
12 Low 5 .033 .067 .130
12 High 5 .034 .074 .134

24 Low 5 .028 .021 .048 .069 .084 .144
24 High 5 .031 .025 .052 .068 .088 .148

12 Low 10 .052 .163 .341
12 Low 10 .047 .153 .333
12 High 10 .055 .169 .352

24 Low 10 .021 .093 .052 .184 .135 .379
24 High

£

~
£
£

£
£ 10 .029 .086 .061 .217 .158 .417
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Table 6
Adjusted Degree of Freedom Test Size for -=

(5%, 10% Missing, 5000 Replications, 0.006)f
%

Missing

12 Low 5 .023 .052 .102
12 Low 5 .021 .051 .099
12 High 5 .022 .050 .096

24 Low 5 .029 .015 .046 .054 .081 .125
24 Hi

5 5 5i� i� i�� 

5 � ~ � 
 � 
 � 


~
£
£

£

� ��� �
�

Z

gh 5 .030 .017 .049 .052 .088 .128

12 Low 10 .011 .057 .206
12 Low 10 .010 .051 .215
12 High 10 .013 .058 .214

24 Low 10 .017 .019 .044 .106 .127 .334
24 High

£

~
£
£

£
£ 10 .020 .022 .055 .120 .148 .354
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Table 7
Adjusted Degree of Freedom Test Size for -..

(5%, 10% Missing Data, 5000 Replications, 0.006)f
5 5 5i� i i��

5 � ~ � 
 � 
 � 


~
£
£

£

� ��� �
�

Z % Missing

12 Low 5 .010 .035 .053
12 Low 5 .019 .043 .059
12 High 5 .026 .050 .066

24 Low 5 .030 .010 .047 .037 .061 .057
24 High 5 .049 .018 .049 .041 .061 .053

12 Low 10 .002 .030 .073
12 Low 10 .008 .038 .078
12 High 10 .009 .040 .075

24 Low 10 .018 .004 .051 .044 .091 .095
24 High

£

~
£
£

£
£ 10 .017 .009 .048 .043 .076 .070
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Table 8
Adjusted Degree of Freedom Test Size for Multivariate  Test-

With  5000 Replications, 0.006) ~ �Á � ~ � fmin ! (5%, 10% Missing, 
� ~ �Á � ~ � � ~ �Á � ~ �

5 � ~ � � � � ~ � � �

~
£

%
Missing

12 Low 5 .038 .072 .114 .031 .051 .078
12 Low 5 .034 .066 .105 .029 .048 .071
12 High

5 5 5 5 5 5i� i� i�� i� i� i��

� ��� �
�

Z

£

£
£

~
£

5 .039 .074 .110 .027 .042 .065

24 Low 5 .036 .052 .077 .036 .046 .067
24 High 5 .037 .050 .078 .030 .043 .064

12 Low 10 .058 .132 .253 .018 .043 .096
12 Low 10 .054 .131 .251 .016 .040 .010
12 High 10 .056 .137 .258 .014 .036 .088

24 Low 10 .028 .052 .102 .026 .043 .089
24 High 10 .028 .048 .104 .018 .036 .073

£

£
£
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Table 9
Choline Measurements Over 5-Week Period in Male Subjects

Treatment Day
0 7 14 21 28 35

Control 9.93 12.29 9.30 9.51 10.84 9.24
9.77 8.14 11.43 9.44 11.10 10.56

12.56 10.90 11.19 12.31 9.95 .
10.15 10.32 8.86 9.23 8.56 12.78
11.00 9.20 8.78 9.37 7.54 12.39
10.46 8.72 8.13 8.14 11.76 9.74

Deficient 12.15 9.52 9.05 9.07 6.76 9.39
12.88 9.66 7.71 7.29 6.37 10.61
7.94 9.86 7.87 8.89 8.69 12.28
9.42 12.82 7.17 8.18 8.30 12.61
9.57 10.95 9.01 8.98 6.56 9.66

11.54 10.43 8.66 8.60 7.87 9.69
11.65 10.64 9.81 8.04 7.52 8.76
8.73 8.08 7.70 6.44 6.42 8.93


