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Large Neuroimaging Data

NIH normal brain development
1000 Functional Connectome Project
Alzheimer’s Disease Neuroimaging Initiative
National Database for Autism Research (NDAR)
Human Connectome Project
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Complex Study Design

cross-sectional studies;
clustered studies including

longitudinal and twin/familial studies;
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Complex Data Structure

Multivariate Imaging Measures
Smooth Functional Imaging Measures
Whole-brain Imaging Measures
4D-Time Series Imaging Measures
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Group Analysis Applications

Group Differences Longitudinal/Family Brain Prediction
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N// Directed Acyclic Graphs for Imaging Genetic Studies
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Gkl Roles of Imaging Data

Image-on-scalar (IS) model:
Image data as response, clinical variables as predictors.

Scalar-on-image (Sl) model:
Clinical variables as response, image data as predictors.

Image-on-Genetic (IG) model:
Image data as response, genetic data as predictors.

Image-on-image (ll) model:
Image data as response, image data as predictors.
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Identify brain regions associated with covariates of interest

Image
Reconstruction

Image
Registration

Image
Smoothing

‘ Statistical
Analysis
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Cons

Independently and sequentially run each step.

Each step has profound effects on the final statistical
results and scientific findings.

Most existing statistical methods ignore the effects of
image registration and inherent spatial feature on
statistical analysis.
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Image Registration

Image registration is the process of transforming

different sets of data into one coordinate system.
Given a reference image R and a template image T,
find a reasonable transformation Y, such that the
transformed image T[Y] is similar to R.
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Registration ErrorS

Method LPBA40 IBSR18 CUMC12 MGH10
LPBAd0 B _ IBSR18 FLIRT 59.29+11.94 39.71+13.00 39.63+11.51 46.24+14.03
2 :’3' "‘b é@i 3 AIR 65.23+10.72 41.41+13.35 42.52+11.90 47.99+14.10
ANIMAL 66.20+10.17 46.31+13.51 42.78+11.95 50.40+15.21
ART 71.85+9.59 51.54+14.42 50.54+12.16 56.10+15.33
D. Demons 68.9349.23 46.83+13.37 46.45+11.46 52.28+14.94
FNIRT 70.07+9.80 47.63+14.15 46.53+12.26 49.54+14.58
IRTK 70.02+10.26 52.09+14.97 51.75+12.45 54.90+15.70
JRD-fuild 70.02+9.83 48.95+13.87 46.37+12.06 52.33+14.81
ROMEO 68.49+10.12 46.48+13.91 44.49+13.04 51.23+14.55
SICLE 60.41+16.21 44.53+13.03 42.08+12.19 48.36+14.31
SyN 71.46+10.86 52.81+14.85 51.63+12.60 56.83+15.81
SPM_N! 66.97+10.14 42.10+13.25 36.70+12.43 49.77£14.54
SPM_N? 57.13+14.95 37.18+14.11 42.93+11.75 43.16+£15.88
SPM_US? 68.62+9.00 45.29+12.60 44.81«11.35 49.61+£14.08
SPM_D* 67.15+18.34 54.02+14.70 51.98+13.91 54.31+16.05
S-HAMMER 72.48+8.46 55.47+11.27 53.74+9.82 58.20+15.03

Brain image dataset with

(11 SPM 5 (“SPM2-type” Normalization)
21 SPM 5 (Normalization) 1 SPM 5 (Unified Segmentation) ! SPM 5 (DARTEL Toolbox)

[1] Klein, A., Andersson, J., Ardekani, B.A., Ashburner, J., Avants, B., Chiang, M.-C., Christensen, G.E., Collins, D.L., Gee, J., Hellier, P., Song,
J.H., Jenkinson, M., Lepage, C., Rueckert, D., Thompson, P., Vercauteren, T., Woods, R.P., Mann, J.J., Parsey, R.V., 2009. Evaluation of 14
nonlinear deformation algorithms applied to human brain MRI registration. Neurolmage 46, 786-802.

[2] Wu, G., Kim, M., Wang, Q., Shen, D.: Hierarchical Attribute-Guided Symmetric Diffeomorphic Registration for MR Brain Images. MICCAI 2012,
Nice, France (2012)

manually labeled ROls
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Smoothing ErrorS

Smoothing method is independent of data
Degree of smoothness is arbitrary

Effect of smoothness is profound

The relationship between smoothing method

and study design is unknown
5
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Jones et al. (2006),

Yue et al. (2010)




Gaussian Smoothing Twin-MARM
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W Spatial Correlation

Long-range Correlation Short-range Correlation
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Data types

Euclidean-valued data (non-normal distributed data)
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12.
13.

14.

15.

Image-on-Scalar: voxel-based Analysis

Reading materials:

D.O. Siegmund, K.J. Worsley (1995). Testing for a signal with unknown location and scale in a stationary gaussian random field.
Ann. Stat., 23, pp. 608-639.

TE Nichols and S Hayasaka. Controlling the Familywise Error Rate in Functional Neuroimaging: A Comparative Review. Statistical
Methods in Medical Research, 12:419-446, 2003.

WL Luo and TE Nichols. Diagnosis & Exploration of Massively Univariate Neuroimaging Models. Neurolmage, 19:1014-1032, 2003.
K.J. Worsley, J.E. Taylor, F. Tomaiuolo, J. Lerch (2004). Unified univariate and multivariate random field theory. Neuroimage, 23, pp.
189-195.

Penny, Flandin, and Trujillo-Bareto (2005). Bayesian comparison of spatially regularised general linear models. Human Brain
Mapping, 28: 275-293.

Harrison, Penny, Ashburner, Trujillo-Bareto, and Friston. (2007). Diffusion-based spatial priors for imaging. Neurolmage, 38: 677-695.
Bowman, F. D., Caffo, B. A, Bassett, S., and Kilts, C. (2008). Bayesian Hierarchical Framework for Spatial Modeling of fMRI Data.
Neurolmage 39: 146-156.

L Xu, TD Johnson, TE Nichols, DE Nee. Modeling inter-subject variability in fMRI activation location: A Bayesian hierarchical spatial
model. Biometrics, 65(4):10410-51, 2009.

Chumbley, K.J. Worsley, G. Flandin, K.J. Friston (2010). Topological fdr for neuroimaging Neuroimage, 49 (4), pp. 3057-3064.

. Y Yue, JM Loh, MA Lindquist. (2010). Adaptive spatial smoothing of fMRI images. Statistics and its Interface 3, 3-13.
. G Salimi-Khorshidi, SM Smith, TE Nichols. Adjusting the effect of nonstation- arity in cluster-based and TFCE inference.

Neuroimage, 54(3):2006-19, 2011.

TE Nichols. Multiple testing corrections, nonparametric methods, and random field theory. Neurolmage, 62(2):811-815, 2012.
Zhao, L., Boucher, M., Rosa-Neto, P., Evans, A., (2013). Impact of scale space search on age- and gender-related changes in mri-
based cortical morphometry. Human Brain Mapping, in press.

Nicholas J. Tustison, Brian B. Avants, Philip A. Cook, Junghoon Kim, John Whyte, James C. Gee and James R. Stone. (2013).
Logical circularity in voxel-based analysis: normalization strategy may induce statistical bias. Human Brain Mapping, In press.
Michelle F. Miranda, Hongtu Zhu, and Joseph G. Ibrahim. (2013). Bayesian Analysis of Spatial Transformation Models with
Applications in Neuroimaging Data. Biometrics, in press.
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Voxel Based Analysis (VBA)

pata {(x.Y):i=1n} Y ={Y(d):dED}

VBA
Stage 0: Gaussian Kernel Smoothing

Stage 1: Model Fitting

HP(Y"C) H | [p(¥i(@)1x,6(a)) e

i=l deD
Ignore spatlal smoothness

Stage 2: Hypothesis Testing

H,:0(d)=0.(d) for all voxels
H,:0(d)=0.(d) for some voxels

Random Field Theory: functional data and local smoothness
FDR
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\AY, VBA

Potential large smoothing errors.

Treat voxels as independent units/images as a
collection of independent voxels.

Ignore spatial correlation and smoothness
in statistical analysis.

Inaccurate for both Prediction and Estimation.

Decrease statistical power.
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VBA Bayesian Extensions

Bayesian Modeling

Spatial smooth prior p(8)=p(6(d):d € D})

p@1Y)o{] [ p¥ 1 x,03p@) ={[ | |]p¥:(d)!x,.0(a))}p(6)

Pro:

i=1 deD

Computationally straightforward;
Bayesian inference based on MCMC samples

Computationally heavy;
Lack of understanding for Bayesian inference tools.
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Example

Spatial Transformation Model
T(Y,(d), M) = x/ B(d)+0(d)e,(d)

where T(.,A(d)) is a Box-Cox transformation function at d.

(a) True B (b) True B, (c) True B, {d) True B, () By GMRF no transf. (j) B,- GMRF no transf. (k) B,- GMRF no transf. () B;- GMRF no transf

it 0.0y

0 20 a0 10 20 30 10 20 30 10 20 30 BT 10 20 30 10 20 30 10 20 30
(e) By- LSE - - (h By LSE (m) By~ GMRF model  (n) B,- GMRF model (o) B,- GMRF model  (p) B,-GMRF model

10
20
30
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VBA Frequentist Extensions

ﬁ [ [P0 @)1%,.0(2)) s ﬁp(Y,.le.,H)

i=1 deD
Spatial Correlation
Spatial Smoothness

Pro:
. Computationally easy and fast;

Con:
. Derive all inference tools.
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Image-on-ScaIar: Varying Coefficient Models

9.

Reading materials:

Yuan, Y., Gilmore, J., Geng, X. J., Styner, M., Chen, K. H., Wang, J. L., and Zhu, H.T. (2013). A longitudinal functional analysis
framework for analysis of white matter tract statistics. Neurolmage, in press.

Yuan, Y., Zhu, H.T., Styner, M., J. H. Gilmore., and Marron, J. S. (2013). Varying coefficient model for modeling diffusion tensors
along white matter bundles. Annals of Applied Statistics. 7(1):102-125..

Zhu, H.T.,, Li, R. Z., Kong, L.L. (2012). Multivariate varying coefficient models for functional responses. Ann. Stat. 40, 2634-2666.
Hua, Z.W., Dunson, D., Gilmore, J.H., Styner, M., and Zhu, HT. (2012). Semiparametric Bayesian local functional models for
diffusion tensor tract statistics. Neurolmage, 63, 460-674.

Zhu, HT., Kong, L., Li, R., Styner, M., Gerig, G., Lin, W. and Gilmore, J. H. (2011). FADTTS: Functional Analysis of Diffusion Tensor
Tract Statistics, Neurolmage, 56, 1412-1425.

Zhu, H.T., Styner, M., Tang, N.S., Liu, Z.X., Lin, W.L., Gilmore, J.H. (2010). FRATS: functional regression analysis of DTI tract
statistics. IEEE Transactions on Medical Imaging, 29, 1039-1049.

Greven, S., Crainiceanu, C., Caffo, B., Reich, D. (2010). Longitudinal principal component analysis. E.J.Statist. 4, 1022-1054.
Goodlett, C.B., Fletcher, P. T., Gilmore, J. H., Gerig, G. (2009). Group analysis of dti fiber tract statistics with application to
neurodevelopement. Neurolmage, 45, S133-S142.

Yushkevich, P. A, Zhang, H., Simon, T., Gee, J. C. (2008). Structure-specific statistical mapping of white matter tracts. Neurolmage,
41, 448-461.

10. Ramsay, J. O., Silverman, B. W. (2005). Functional Data Analysis, Springer-Verlag, New York.
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Smooth Neuroimaging Data

Smooth Functional Data

Covariates (e.g., age, gender, diagnostic)
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2 Longitudinal Extensions

Longitudinal Data Spatial-temporal Process
¥ WACH?Y
Y, (8.1,)
Yi(8,4,)
> S

Functional Mixed Effect Models
y.(s,t)=x, (t)TB (s)+z, (t)T E.(s)+n,(s,t)+&(s,1)

Objectives:
Dynamic functional effects of covariates of interest on functional response.
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Data format Estimation Inference tool
Linear mixed effects models Standard longitudinal data y;; Fixed effects Test statistics
Agel »
Agel o
Agel »
Covariance

Guo (2002)’s method

Greven et al. (2010)’s method

FMEM

One-time-measured curves y;(s)

Agel ‘/ﬁ'j\/_/\/l\o\,\

Multiple-time-measured curves y;;(s)

Agel
Agel
Age2

Multiple-time-measured curves y;;(s)

Agel
Agel
Age2

Fixed effect functions Test statistics

Random effect functions
Fixed effect functions

Covariance functions

Fixed effect functions Test statistics

Covariance functions
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Functional mixed effects
model

T T 02 0
Y (8)=x;" B(s)+z; &(s)+1;(s) + £;(s) 200 800 1200 -50-30-10 10 3043

Age (days) Arclength
Initial estimator Local constant and functional
I Refined estimator I principal component analysis

0.58

— n§ A
Ze(s.0)= 3497 (Wi ()

-0. 02—
n
-40 -20 0 20 40 = LAY S .
Arclength ‘ z, (s,0) = lzlﬂ?l/jln (/' (2)
Resampling -— Simultaneous Hypothesis # Resampling
method confidence bands test method
600 0.04 oo, H, : CB(s) = by(s) 1232
400 72 e S I
H,: CB b
200 7 1 (s) = by(s) 400 .
0 -C (0) C () -0.03; . ) ) . . 0
35 0 0.2 -40 -20 0 20 40 0 200 200

Arclength

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



Gender: Male/Female 83/54

Gestational age at birth (weeks) 38.67 +1.74 3
Age at scan 1 (days) 297.89 + 13.90
Age at scan 2 (days) 655.34 + 24.00
Age at scan 3 (days) 1021.70 = 28.26
Number of Gradient directions : .
dir6/dird42 at scan 1 80/24 DTImagmg parameters'
dir6/dir42 at scan 2 59/44
dir6/dir4?2 at scan 3 42/49 « TRITE =5200/73 ms
» Slice thickness = 2mm
Svailaltale scans 1 1:‘  In-plane resolution = 2x2 mmA2
eonate scan only . - A
1 year scan only 2 b =1000 s/mm*"2
2 year scan only 3  One reference scan b =0 s/mm*2
Neonate + 1 year scan 43  Repeated 5 times when 6 gradient
Neonate + 2 year scan 30 directions applied.
| year + 2 year scan 28
Neonate + 1 year + 2 year scan 30
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Real Data
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Y Real Data Analysis Results
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Real Data Analysis Results
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| Image-on-ScaIar: Multiscale Adaptive Regression Models

Reading materials:

Zhu, HT,, Fan, J.Q., and Kong, L. (2013). Spatial varying coefficient model and its applications in neuroimaging data with jump
discontinuity. in submission.

Li, YM, John Gilmore, JA Lin, Shen DG, Martin, S., Weili Lin, and Zhu, HT. (2013). Multiscale adaptive generalized estimating
equations for longitudinal neuroimaging data. 72, 91-105.

Li, YM, John Gilmore, JP Wang, M. Styner, Weili Lin, and Zhu, HT, (2012). Two-stage spatial adaptive analysis of twin neuroimaging
data. IEEE Transactions on Medical Imaging. 31, 1100-12.

Skup, M., Zhu, H.T., and Zhang HP. (2012). Multiscale adaptive marginal analysis of longitudinal neuroimaging data with time-varying
covariates. Biometrics, 68(4):1083-1092.

Shi, XY, Ibrahim JG, Styner M., Yimei Li, and Zhu, HT. (2011). Two-stage adjusted exponential tilted empirical likelihood for
neuroimaging data. Annals of Applied Statistics, 5, 1132-1158.

Li, YM, Zhu HT, Shen DG, Lin WL, Gilmore J, and lbrahim JG. (2011). Multiscale adaptive regression models for neuroimaging
data. JRSS, Series B, 73, 559-578.

Neurolmage, 52 (2010) pp. 515--523.
Polzehl, J. and Spokoiny, V. G. (2006). Propagation-separation approach for local likelihood estimation. Probability Theory and
Related Fields, 135, 335-362.

olzeh poKoln 000
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Piecewise Smooth Data

Noisy Piecewise Smooth
Functions
with Unknown
Jumps and Edges

Image is the point or set of points in the range corresponding
to a designated point in the domain of a given function.

A Qisacompactset. ¥€QC R
=) f()EMCR" f:Q—->MCR"

* f9||f()~6)||kd5c <o for some k>0
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%Y Neuroimaging Data with Discontinuity

Noisy Piecewise Smooth Function with Unknown Jumps and Edges

Subjectl]  Subject2

Covariates (e.g., age, gender, diagnostic, stimulus)
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@ Multiscale Adaptive Regression Model

Voxel-wise Approach

p(YiplXi) = || p(Yi(d)x:,0(d)),
deD
MARM
Being Spatial
p(Yin|Xi) ~ | [p({Yi(d) : d' € Di}lxs)
Dy,

Dk denotes the set of all voxels in a homogeneous region
§ 038 § 0.04
”

I | i |
-0.24 -0.04

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL
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Multiscale Adaptive Regression Model

Identifying homogeneous regions Dk

Drawing a sphere with radius r0 at each voxel

Calculating the similarities between the current
voxel and its neighboring voxels.

/ Wi
1

Wyl Wil /W,

J &

Ws Wy

wg| Wi| Wy

\ Wid

[ —]
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~  Multiscale Adaptive Regression Model

Model Specification

p(Yin|Xi) ~ [] p({Yi(d') : d' € B(d,ro)}xi),
deD

p({Yi(d): d'eBdrn)lx)~ [] »pYi(d)xi,0(d)l )
d'eB(d,rg)

w(d, d'; 7“0) is a weight function for characterizing the
similarity between the data in voxels d and d’.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



>

Multiscale Adaptive Regression Model

Being Hierarchical

Drawing nested spheres with increasing
radiuses at each voxel

ho =0< hy <---< hg=mg
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Multiscale Adaptive Regression Model

Being Adaptive

Sequentially determii w(d, d; h) and adaptively updaié(d, h)

o O O

w(d,d'; hg) w(d,d'; hy) w(d,d'; hg = o)
Y / Y S S Y
6(d; ho) 6(d; hy) 6(d; hs)
Il Il 1
W, (d; ho) W, (d; h) o W, (d; hs)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL
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UTY  Multiscale Adaptive Regression Model

Learning Voxel Feature

Local Feature Adaptation

Adaptive Estimation and Testing

Automatic Stop
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\AY Multiscale Adaptive Regression Model

Learning Voxel Feature

Set bandwidth /,=0 and run voxel-wise approach.

Generate a geometric series th_ =c, : 5 =1,...8'}
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\AY Multiscale Adaptive Regression Model

Local Feature Adaptation

For any radius A > hg, define
@(d,d';hs) = Kioc(||d — d'||2/hs)Kst(De(d,d's hs—1)/ Cn)
Kioc(u) and K (u) are two decreasing kernel functions

Smoothing kernel: Kjoo(u) = (1 —u?) 4

Similarity kernel: Kg(u) = exp(—u)l (u < s(lcf;s%l—Z))

Dissimilarity measure:

Dg(d,d';hs_1) =
0(d;hs—1) —0(d';hs—1)|T5(0(d;hs—1)) [0 (d;hs—1) — O(d'; hs—1)].
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Multiscale Adaptive Regression Model

>

Adaptive Estimation and Testing

Weighted quasi-likelihood

0, (0 Z > @(d,d'h)log p(Yy(d')|x;, 0(d))

i=1 d’eB(d,h)

MWQLE
0(d, h) = argmaxg ,n”~ ", (0(d); h, )

Newton-Raphson Algorithm

0(d, 1) = 0(d, b)Y + {~07,, £a(0(d, 1), @)}~ D) La(B(d, 1)V h, )

Expectation-Maximization Algorithm
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Multiscale Adaptive Regression Model

2

Adaptive Estimation and Testing

Sandwich Estimator

Cov[8(d, h)] = Tn(8(d, ) = [Sn1(B(d, 1)) 0,2(8(d, h)[0,1(8(d, h))]
$0,1(0(d) = —03 £,(8(d); h, &) and

Ln20d) =) [ Y, o d;h)dg, logp(Yi(d)|xi,0(d))]*?
i=1 d’€B(d,h)

Wald Test Statistic

[R(8(d; b)) — bo)" [0 4y R(O(d; 1)), (8(d; 1)) Dg 4y R(O(d; 1)) [R(O(d; h)) — bo]
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W Multiscale Adaptive Regression Model

Automatic Stop ] " i
Wi Wil /W,
hO:O<h1<<hS:TO W Wy
Wg| W4 Wi

— 2 Wig

Kloc(u) — (1 — U )_|_ \‘_,,

Ky (u) = exp(—u)1 (u < s(l(fQﬁl—Z))

w(dad,;hs) — Kloc(| |d — d,||2/hs)Kst(D9 (d,d,; hs—l)/Cn)

As S increases, the first kernel gets larger for any voxel pairs, whereas

the second kernel penalizes more and more for the voxel pairs with
distinctive features.
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Multiscale Adaptive Regression Model

2

log(Voxel size)<<Cn << sample size

Kernel functions

Conditions for M-estimators hold uniformly

Weak Consistency

Asymptotical Normality

Asymptotically Chi-squared distribution
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>

Infant Brain Development Data

* Objective: We want to assess the brain structure
change in the early brain development.

* Subject: 38 infants.

« Image: Diffusion-weighted images and T1 weighted
images were acquired for each subject at 2 weeks, 1 and
2 years old.

 Method: Voxel-wise imaging analysis and MARM.
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Adaptive Neighhoods

Adaptive Weights

Cross-sectional, longitudinal,
twin and family studies

Robust Procedure

Parametric and Nonparametric
Components
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2 SVCM

Decomposition:

y(d)=x B(a’)+%(a’)+s(d) deD

Piecewise Smooth Short-range Correlation

Varying Coefficients 3D volume/

Long-range Correlation 8..(‘) N SP(O,Z ), 2D surface
B(d)EL"  5,(+)~SP0,%,) ‘9

S (d,d) =2, (d,d)l(d =d")

Covariance operator:

S (d,d) =3, (d,d")+Z,(d,d)(d =d")
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SVCM

Piecewise Smoothness Condition B, (d)

Disjoint Partition

D=U; D, andD,ND, =¢

Piecewise Smoothness: Lipschitz condition

Local Patch

Deqgree of Jumps
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Challenging Issues

y(d)=x'B(d)+n (d)+¢e(d), dED

« Smoothing coefficient images, while preserving
unknown boundaries

- Different patterns in different coefficient images

« Calculating standard deviation images

 Asymptotic theory

- 0.04
i

I | i |
-0.24 -0.04
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BNy, SVCM

Least Squares Estimates B(d; h,) = (i xx! )‘li x.y.(d)
i=1 i=1

Smoothing residual images n(d)=Sy.(d)- x,-Té(d; h,))

Estimate covariance operator in (d,d") = Eﬁi(a’ m.(d "' /n

(Gt (@)1 =1L ,}

Adaptively Smoothing LSEs

B(dih)=, o W A OB [N, w(dd'ih)

Calculate standard deviation

d'EB(dh)
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b Smoothing Methods

Propogation-Seperation Method
J. Polzehl and V. Spokoiny, (2000,2005)

Noisy image sigma=0.4

Features

* Increasing Bandwidth

O<hy<h <---<hg=r,
« Adaptive Weights

« Adaptive Estimates
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M Smoothing Methods

Propogation-Seperation Method

At each voxel d

« Increasing Bandwidth 0< hO < hl < e < hS =7,
- Adaptive Weights lr’w(d,d';hﬂ

l a)(d7d|,h2)
« Adaptive Estimates r w(d,d";h,)
w(d:hy)  (dsh) B

o(d,d'sh) =K, (ld-d"| /h)K, (D, (d,d"sh_)/C,) \t\> a(d;hy)

D, (d,d'sh_) = p(a(d;h_,),a(d " h,_,)) Stopping Rule

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



2N




2N

4
an s




Wy

Wg

“«"10
Pt

N

2N






2N

W

-~




Simulation

3
Yi(d) = X B(d) + ) _ &jibi(d) + €(d);
j=1

» d = (dj.db.d3)" € D, ab4 x 64 x 83D image

» Xi = (X1, Xi2, Xi3) T with x;1 = 1, x;o ~ Bernoulli(0.5),
Xz ~ Unif (1,2)

> B(d) = (51(d). Ba(d). fs(d))T with 3:(d), a(d) and
Bs(d) € {0,0.2,0.4,0.6,0.8}

» &1~ N(0,0.8), &o~ N(0,04), &3~ N(0,0.2)
ei(d) ~ N(0, 1)

» 1(d) =0.5sin(27d; /64), 1o(d) = 0.5cos(27d>/64)
Y3(d) = \/1 /2.625(9/8 — d3/4)
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Simulation

From left to right: 4(d), v2(d), and v3(d).

0 02 04 06 08

-0.2 02 04 06 08

From up to down: initial and adaptive estimates; left to right: 54(d), 52(d),

and s (d). VERSITY of NORTH CAROLINA at CHAPEL HILL



L

-0.2 0 0.2 04 06 0.8 - o 0.05 0.05 0.06 0.07 0.08 0.05 0.06

From up to down: initial and adaptive estimations; left to right: 3, Bias, RMS,
SD and RE (RMS/SD).
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n = 60 n =80

B2(d) ho hs h1o ho hs h1o
0 BIAS 0.000 0.002 0.002 0.000 0.002 0.002
RMS 0.139 0.070 0.068 0.121 0.061 0.060
SD 0.140 0.074 0.067 0.121 0.064 0.058
RE 0.993 0.942 1.026 1.001 0.947 1.036
0.2 BIAS 0.000 -0.006 -0.007 0.001 -0.005 -0.006
RMS 0.140 0.074 0.073 0.122 0.065 0.064
SD 0.141 0.077 0.070 0.122 0.067 0.061
RE 0.993 0.963 1.043 1.000 0.971 1.056
0.4 BIAS 0.000 0.001 0.001 -0.001 0.001 0.001
RMS 0.140 0.075 0.074 0.122 0.066 0.065
SD 0.141 0.078 0.071 0.122 0.068 0.062
RE 0.992 0.962 1.041 1.001 0.973 1.055
0.6 BIAS 0.000 -0.006 -0.007 0.000 -0.004 -0.005
RMS 0.139 0.073 0.072 0.121 0.063 0.063
SD 0.140 0.075 0.069 0.121 0.066 0.059
RE 0.994 0.969 1.052 0.999 0.967 1.053
0.8 BIAS -0.001 -0.008 -0.010 0.000 -0.006 -0.008
RMS 0.141 0.075 0.074 0.123 0.066 0.066
SD 0.143 0.081 0.074 0.123 0.070 0.064
RE 0.990 0.935 1.008 1.001 0.949 1.025
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From up to down: —/ogio(p) of initial and adative estimates; left to right:
B1(d), B2(d), and 3(d).
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



n =60 n = 80
Bo(d) ES SE ES SE
0 ho 0.048 0.015 | 0.050 0.016
hio | 0.036 0.016 | 0.040 0.019
0.2 ho 0.282 0.033 | 0.370 0.035
hio | 0.777 0.107 | 0.870 0.081
0.4 ho 0.794 0.030 | 0.895 0.024
hio | 0.994 0.006 | 0.998 0.003
0.6 ho 0.988 0.008 | 0.998 0.003
hio | 1.000 0.001 1.000 0.000
0.8 ho 1.000 0.001 1.000 0.000
hio | 1.000 0.000 | 1.000 0.000

Estimates (ES) and standard errors(SE) of rejection rates
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2 Real Data

Attention deficit hyperactivity disorder (ADHD) is a
developmental disorder.

ADHD is the most commonly studied and diagnosed
psychiatric disorder in children.

It affects about 3 to 5 percent of children globally and
diagnosed in about 2 to 16 percent of school aged children.

It directly cost about $36 billion per year in US.

ADHD-200 Global Competition is a grassroots initiative
event to accelerate the understanding of ADHD.
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\QAY) Real Data

ADHD200 NYU Data

Subjects: 174 subjects, 99 normal and 75 ADHD-combined
Response: RAVEN map
Covariates: age, gender, group, G*Age, G*Gender
and whole brain volume
Goal: Group*Age and Group*Gender
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Interaction effect estimates

Gender x Diagno
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X Diagnotic Status
Gender x Diagnostic status




Significant Regions
Age x Diagnotic Status
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Prediction

GLM

SVCM

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



M The ADNI data

Focus on the Mild Cognitive Impairment people

Interested in predicting the timing of an MCI patient that
converts to the AD by considering the imaging data, the clinical
and genetic covariates.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



The imaging data: radial distance obtained from left and right
hippocampus, 15000 dimensional vector each

The clinical covariates: Gender, Handedness, Marital Status,
Education length, Retirement and Age.

The genetics covariates: APOE4 genotypes
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Semiparametric functional linear Cox regression

h0) = hlt) () X+ [ Zisp(ops + [ 23 (shs)

Using Functional Principal Component Analysis
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A

For the first functional predictor, the first three functional principal

components are significant.

For the second functional predictor, the first and the fifth
components are significant.

Indicates that both left hippocampus and right hippocampus have
significant effect on the conversion.

For the clinical and genetics covariates, the gender, age and the
genotype of the second allele in APOE4 are significant.
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Panel (a) is the color bar illustration. Panel (b) are the estimated of the coefficient functions.
Panel (c)-(i) represent the first seven estimated eigenfunctions for both predictors.
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