modelLINEAR {MatrixEQTL} | R Documentation |
Matrix_eQTL_engine
.Set parameter useModel = modelLINEAR
in the call of Matrix_eQTL_main
to indicate that the effect of genotype on expression should be assumed to be additive linear.
The package website: http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/
See Matrix_eQTL_engine
for reference and sample code.
library('MatrixEQTL') # Number of columns (samples) n = 100; # Number of covariates nc = 10; # Generate the standard deviation of the noise noise.std = 0.1 + rnorm(n)^2; # Generate the covariates cvrt.mat = 2 + matrix(rnorm(n*nc), ncol = nc); # Generate the vectors with genotype and expression variables snps.mat = cvrt.mat %*% rnorm(nc) + rnorm(n); gene.mat = cvrt.mat %*% rnorm(nc) + rnorm(n) * noise.std + 0.5 * snps.mat + 1; # Create 3 SlicedData objects for the analysis snps1 = SlicedData$new( matrix( snps.mat, nrow = 1 ) ); gene1 = SlicedData$new( matrix( gene.mat, nrow = 1 ) ); cvrt1 = SlicedData$new( t(cvrt.mat) ); # name of temporary output file filename = tempfile(); # Call the main analysis function me = Matrix_eQTL_main( snps = snps1, gene = gene1, cvrt = cvrt1, output_file_name = filename, pvOutputThreshold = 1, useModel = modelLINEAR, errorCovariance = diag(noise.std^2), verbose = TRUE, pvalue.hist = FALSE ); # remove the output file unlink( filename ); # Pull Matrix eQTL results - t-statistic and p-value beta = me$all$eqtls$beta; tstat = me$all$eqtls$statistic; pvalue = me$all$eqtls$pvalue; rez = c(beta = beta, tstat = tstat, pvalue = pvalue) # And compare to those from the linear regression in R { cat('\n\n Matrix eQTL: \n'); print(rez); cat('\n R summary(lm()) output: \n'); lmodel = lm( gene.mat ~ snps.mat + cvrt.mat, weights = 1/noise.std^2 ); lmout = summary( lmodel )$coefficients[2, c(1,3,4)]; print( lmout ) } # Results from Matrix eQTL and 'lm' must agree stopifnot(all.equal(lmout, rez, check.attributes=FALSE))