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PREFACE

These course notes have been revised based on my past teaching experience at the department
of Biostatistics in the University of North Carolina in Fall 2004 and Fall 2005. The context in-
cludes distribution theory, probability and measure theory, large sample theory, theory of point
estimation and efficiency theory. The last chapter specially focuses on maximum likelihood
approach. Knowledge of fundamental real analysis and statistical inference will be helpful for
reading these notes.

Most parts of the notes are compiled with moderate changes based on two valuable textbooks:
Theory of Point Estimation (second edition, Lehmann and Casella, 1998) and A Course in
Large Sample Theory (Ferguson, 2002). Some notes are also borrowed from a similar course
taught in the University of Washington, Seattle, by Professor Jon Wellner. The revision has
incorporated valuable comments from my colleagues and students sitting in my previous classes.
However, there are inevitably numerous errors in the notes and I take all the responsibilities
for these errors.

Donglin Zeng
August, 2006

PREFACE TO REVISED VERSION

The revised version involves several minor corrections and additions, but has not been changed
much compared to the original.

Michael R. Kosorok
August, 2010



CHAPTER 1 A REVIEW OF
DISTRIBUTION THEORY

This chapter reviews some basic concepts of discrete and continuous random variables. Distri-
bution results on algebras and transformations of random variables (vectors) are given. Part of
the chapter pays special attention to the properties of Gaussian distributions. The final part
of the chapter introduces some commonly-used distribution families.

1.1 Basic Concepts

Random variables are often classified into discrete random variables and continuous random
variables. By name, discrete random variables are variables which take on discrete values with
an associated probability mass function; while, continuous random variables are variables taking
non-discrete values (usually R) with an associated probability density function. A probability
mass function consists of countable non-negative values with their total sum being one and a
probability density function is a non-negative function on the real line with its entire integral
being one.

However, the above definitions are not rigorous. What is the precise definition of a random
variable? Why shall we distinguish between mass functions or density functions? Can some
random variable be both discrete and continuous? The answers to these questions will become
clear in next chapter on probability measure theory. However, a brief glimpse is given below:

(a) Random variables are essentially measurable functions from a probability measure space to
a real space. Especially, discrete random variables map into a discrete set and continuous
random variables map into the whole real line.

(b) The probability (probability measure) is a function assigning non-negative values to sets
of a σ-field and it satisfies the property of countable additivity.

(c) The probability mass function for a discrete random variable is the Radon-Nykodym
derivative of a random variable-induced measure with respect to a counting measure.
The probability density function for continuous random variable is the Radon-Nykodym
derivative of the random variable-induced measure with respect to the Lebesgue measure.

For this chapter, we do not need to worry about these abstract definitions.
Some quantities to describe the distribution of a random variable include cumulative distri-

bution function, mean, variance, quantile, mode, moments, centralized moments, kurtosis and
skewness. For instance, if X is a discrete random variable taking values x1, x2, ... with probabili-
ties m1, m2, .... The cumulative distribution function of X is defined as FX(x) =

∑
xi≤xmi. The

1
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kth moment of X is given as E[Xk] =
∑

imix
k
i and the kth centralized moment of X is given as

E[(X − µ)k] where µ is the expectation of X. If X is a continuous random variable with prob-
ability density function fX(x), then the cumulative distribution function FX(x) =

∫ x
−∞ fX(t)dt

and the kth moment of X is given as E[Xk] =
∫∞
−∞ x

kfX(x)dx if the integration is finite.

The skewness of X is given by E[(X − µ)3]/V ar(X)3/2 and the kurtosis of X is given by
E[(X − µ)4]/V ar(X)2. The last two quantities describe the shape of the density function:
negative values for the skewness indicate distributions that are skewed to the left and positive
values indicate distributions skewed to the right. By skewed to the left, we mean that the
left tail is heavier than the right tail. Similarly, skewed to the right means that the right tail
is heavier than the left tail. A large kurtosis indicates a “peaked” distribution and a small
kurtosis indicates a “flat” distribution. Note that we have already used E[g(X)] to denote the
expectation of g(X). Sometimes, we use

∫
g(x)dFX(x) to represent this whether or not X is

continuous or discrete. This notation will be clear after we introduce probability measures.
Next we review an important quantity in distribution theory, namely the characteristic func-

tion of X. By definition, the characteristic function for X is defined as φX(t) = E[exp{itX }] =∫
exp{itx}dFX (x ), where i is the imaginary unit, the square-root of -1. Equivalently, φX(t)

is equal to
∫

exp{itx}fX (x )dx for continuous X and is
∑

jmj exp{itxj} for discrete X. The
characteristic function is important since it uniquely determines the distribution function of X,
the fact implied in the following theorem:

Theorem 1.1 (Uniqueness Theorem) If a random variable X with distribution function
FX has a characteristic function φX(t) and if a and b are continuous points of FX , then

FX(b)− FX(a) = lim
T→∞

1

2π

∫ T

−T

e−ita − e−itb

it
φX(t)dt.

Moreover, if FX has a density function fX (for continuous random variable X) , then

fX(x) =
1

2π

∫ ∞

−∞
e−itxφX(t)dt.

†

We defer the proof to Chapter 3. Similar to the characteristic function, we can define the
moment generating function for X as MX(t) = E[exp{tX}]. However, we note that MX(t) may
not exist for some t but φX(t) always exists.

Another important and distinct aspect in distribution theory is the independence of two
random variables. For two random variables X and Y , we say X and Y are independent if
P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y); i.e., the joint distribution function of (X, Y ) is
the product of the two marginal distributions. If (X, Y ) has a joint density, then an equiv-
alent definition is that the joint density of (X, Y ) is the product of two marginal densities.
Independence introduces many useful properties, among which one important property is that
E[g(X)h(Y )] = E[g(X)]E[h(Y )] for any sensible functions g and h. In the more general
case when X and Y may not be independent, we can calculate the conditional density of
X given Y , denoted by fX|Y (x|y), as the ratio between the joint density of (X, Y ) and the
marginal density of Y . Thus, the conditional expectation of X given Y = y is equal to
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E[X|Y = y] =
∫
xfX|Y (x|y)dx. Clearly, when X and Y are independent, fX|Y (x|y) = fX(x)

and E[X|Y = y] = E[X]. For conditional expectations, two formulae are useful:

E[X] = E[E[X|Y ]] and V ar(X) = E[V ar(X|Y )] + V ar(E[X|Y ]).

So far, we have reviewed some basic concepts for a single random variable. All the above
definitions can be generalized to a multivariate random vector X = (X1, ..., Xk)

′ with a joint
probability mass function or a joint density function. For example, we can define the mean
vector of X as E[X] = (E[X1], ..., E[Xk])

′ and define the covariance matrix for X as E[XX ′]−
E[X]E[X]′. The cumulative distribution function for X is a k-variate function FX(x1, ..., xk) =
P (X1 ≤ x1, ..., Xk ≤ xk) and the characteristic function of X is a k-variate function, defined as

φX(t1, ..., tk) = E[ei(t1 X1 +...+tkXk )] =

∫

Rk
ei(t1 x1 +...+tkxk )dFX(x1, ..., xk).

Similar to Theorem 1.1, an inversion formula holds: Let A = {(x1, .., xk) : a1 < x1 ≤
b1, . . . , ak < xk ≤ bk} be a rectangle in Rk and assume P (X ∈ ∂A) = 0, where ∂A is the
boundary of A. Then

FX(b1, ..., bk)− FX(a1, ..., ak) = P (X ∈ A)

= lim
T→∞

1

(2π)k

∫ T

−T
· · ·
∫ T

−T

k∏

j=1

e−itj aj − e−itj bj

itj

φX(t1, ..., tk)dt1 · · ·dtk.

Finally, we can define the conditional density, the conditional expectation, and independence
of two random vectors similarly to the univariate case.

1.2 Examples of Special Distributions

We list some commonly-used distributions in the following examples.

Example 1.1 Bernoulli Distribution and Binomial Distribution A random variable X
is said to be Bernoulli(p) if P (X = 1) = p = 1 − P (X = 0). If X1, ..., Xn are independent,
identically distributed (i.i.d) Bernoulli(p), then Sn = X1 + ...+Xn has a binomial distribution,
denoted by Sn ∼ Binomial(n, p), with

P (Sn = k) =

(
n

k

)
pk(1− p)n−k.

The mean of Sn is equal to np and the variance of Sn is equal to np(1− p). The characteristic
function for Sn is given by

E[eitSn ] = (1− p+ peit)n.

Clearly, if S1 ∼ Binomial(n1, p) and S2 ∼ Binomial(n2, p) and S1, S2 are independent, then
S1 + S2 ∼ Binomial(n1 + n2, p).

Example 1.2 Geometric Distribution and Negative Binomial Distribution LetX1, X2, ...
be i.i.d Bernoulli(p). Define W1 = min{n : X1 + ... +Xn = 1}. Then it is easy to see

P (W1 = k) = (1− p)k−1p, k = 1, 2, ...
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We say W1 has a geometric distribution: W1 ∼ Geometric(p). To be general, define Wm =
min{n : X1 + ...+Xn = m} to be the first time that m successes are obtained. Then

P (Wm = k) =

(
k − 1

m− 1

)
pm(1− p)k−m, k = m,m + 1, ...

Wm is said to have negative binomial distribution: Wm ∼ Negative Binomial(m, p). The mean
of Wm is equal to m/p and the variance of Wm is m/p2−m/p. If Z1 ∼ Negative Binomial(m1, p)
and Z2 ∼ Negative Binomial(m2, p) and Z1, Z2 are independent, then

Z1 + Z2 ∼ Negative Binomial(m1 +m2, p).

Example 1.3 Hypergeometric Distribution A hypergeometric distribution can be obtained
using the following urn model: suppose that an urn contains N balls with M bearing the number
1 and N −M bearing the number 0. We randomly draw a ball and denote its number as X1.
Clearly, X1 ∼ Bernoulli(p) where p = M/N . Now replace the ball back in the urn and
randomly draw a second ball with number X2 and so forth. Let Sn = X1 + ...+Xn be the sum
of all the numbers in n draws. Clearly, Sn ∼ Binomial(n, p). However, if each time we draw
a ball but do not replace it back, then X1, ..., Xn are dependent random variable. It is known
that Sn has a hypergeometric distribution:

P (Sn = k) =

(
M
k

)(
N−M
n−k

)
(
N
n

) , k = 0, 1, .., n.

Or, we write Sn ∼ Hypergeometric(N,M, n).

Example 1.4 Poisson Distribution A random variable X is said to have a Poisson distri-
bution with rate λ, denoted X ∼ Poisson(λ), if

P (X = k) =
λke−λ

k!
, k = 0, 1, 2, ...

It is known that E[X] = V ar(X) = λ and the characteristic function for X is equal exp{−λ(1−
eit)}. Thus, if X1 ∼ Poisson(λ1) and X2 ∼ Poisson(λ2) are independent, then X1 + X2 ∼
Poisson(λ1 + λ2). It is also straightforward to check that conditional on X1 + X2 = n, X1 is
Binomial(n, λ1/(λ1 + λ2)). In fact, a Poisson distribution can be considered as the summation
of a sequence of Bernoulli trials each with small success probability: suppose that Xn1, ..., Xnn

are i.i.d Bernoulli(pn) and npn → λ. Then Sn = Xn1 + ...+Xnn has a Binomial(n, pn). We note
that for fixed k, when n is large,

P (Sn = k) =
n!

k!(n− k)!
pkn(1− pn)n−k → λk

k!
e−λ.

Example 1.5 Multinomial Distribution Suppose that {B1, ..., Bk} is a partition of R. Let
Y1, ..., Yn be i.i.d random variables. Let X i = (Xi1, ..., Xik) ≡ (IB1(Yi), ..., IBk(Yi)) for i = 1, ..., n
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and set N = (N1, ..., Nk) =
∑n

i=1 Xi. That is, Nl, 1 ≤ l ≤ k counts the number of times that
{Y1, ..., Yn} fall into Bl. It is easy to calculate

P (N1 = n1, ..., Nk = nk) =

(
n

n1, ..., nk

)
pn1

1 · · · pnkk , n1 + ...+ nk = n,

where p1 = P (Y1 ∈ B1), ..., pk = P (Y1 ∈ Bk). Such a distribution is called the Multinomial
distribution, denoted Multinomial(n, (p1, .., pk)). We note that each Nl is a binomial distribution
with mean npl. Moreover, the covariance matrix for (N1, ..., Nk) is given by

n



p1(1− p1) . . . −p1pk

...
. . .

...
−p1pk . . . pk(1− pk)


 .

Example 1.6 Uniform Distribution A random variable X has a uniform distribution in an
interval [a, b] if X’s density function is given by I[a,b](x)/(b−a), denoted by X ∼ Uniform(a, b).
Moreover, E[X] = (a + b)/2 and V ar(X) = (b− a)2/12.

Example 1.7 Normal Distribution The normal distribution is the most commonly used
distribution and a random variable X with N(µ, σ2) has a probability density function

1√
2πσ2

exp{−(x− µ)2

2σ2
}.

Moreover, E[X] = µ and var(X) = σ2. The characteristic function for X is given by exp{itµ−
σ2 t2 /2}. We will discuss this distribution in detail later.

Example 1.8 Gamma Distribution A Gamma distribution has a probability density

1

βθΓ(θ)
xθ−1 exp{−x

β
}, x > 0

denoted by Γ(θ, β). It has mean θβ and variance θβ2. Specially, when θ = 1, the distribution
is called the exponential distribution, Exp(β). When θ = n/2 and β = 2, the distribution is
called the Chi-square distribution with degrees of freedom n, denoted by χ2

n.

Example 1.9 Cauchy Distribution The density for a random variable X ∼ Cauchy(a, b)
has the form

1

bπ {1 + (x− a)2/b2} .

Note E[X] =∞. Such a distribution is often used as a counterexample in distribution theory.
Many other distributions can be constructed using some elementary algebra such as sum-

mations, products, and quotients of the above special distributions. We will discuss these in
the next section.
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1.3 Algebra and Transformation of Random Variables (Vec-

tors)

In many applications, one wishes to calculate the distribution of some algebraic expression
of independent random variables. For example, suppose that X and Y are two independent
random variables. We wish to find the distributions of X+Y , XY and X/Y (we assume Y > 0
for the last two cases).

The calculation of these algebraic distributions is often done using the conditional expec-
tation. To see how this works, we denote FZ(·) as the cumulative distribution function of any
random variable Z. Then for X + Y ,

FX+Y (z) = E[I(X+Y ≤ z)] = EY [EX [I(X ≤ z−Y )|Y ]] = EY [FX(z−Y )] =

∫
FX(z−y)dFY (y);

symmetrically,

FX+Y (z) =

∫
FY (z − x)dFX(x).

The above formula is called the convolution formula, sometimes denoted by FX ∗FY (z). If both
X and Y have densities functions fX and fY respectively, then the density function for X + Y
is equal to

fX ∗ fY (z) ≡
∫
fX(z − y)fY (y)dy =

∫
fY (z − x)fX(x)dx.

Similarly, we can obtain the formulae for XY and X/Y as follows:

FXY (z) = E[E[I(XY ≤ z)|Y ]] =

∫
FX(z/y)dFY (y), fXY (z) =

∫
fX(z/y)/yfY (y)dy,

FX/Y (z) = E[E[I(X/Y ≤ z)|Y ]] =

∫
FX(yz)dFY (y), fX/Y (z) =

∫
fX(yz)yfY (y)dy.

These formulae can be used to construct some familiar distributions from simple random
variables. We assume X and Y are independent in the following examples.

Example 1.10 (i) X ∼ N(µ1, σ
2
1) and Y ∼ N(µ2, σ

2
2). X + Y ∼ N(µ1 + µ2, σ

2
1 + σ2

2).
(ii) X ∼ Cauchy(0, σ1) and Y ∼ Cauchy(0, σ2) implies X + Y ∼ Cauchy(0, σ1 + σ2).
(iii) X ∼ Gamma(r1, θ) and Y ∼ Gamma(r2, θ) implies that X + Y ∼ Gamma(r1 + r2, θ).
(iv) X ∼ Poisson(λ1) and Y ∼ Poisson(λ2) implies X + Y ∼ Poisson(λ1 + λ2).
(v) X ∼ Negative Binomial(m1, p) and Y ∼ Negative Binomial(m2, p). Then X+Y ∼ Negative
Binomial(m1 +m2, p).

The results in Example 1.10 can be verified using the convolution formula. However, these
results can also be obtained using characteristic functions, as stated in the following theorem.

Theorem 1.2 Let φX(t) denote the characteristic function for X. Suppose X and Y are
independent. Then φX+Y (t) = φX(t)φY (t). †

The proof is direct. We can use Theorem 1.2 to find the distribution of X+Y . For example,
in (i) of Example 1.10, we know φX(t) = exp{µ1t − σ2

1t
2/2} and φY (t) = exp{µ2t − σ2

2t
2/2}.

Thus,
φX+Y (t) = exp{(µ1 + µ2)t− (σ2

1 + σ2
2)t2/};
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while the latter is the characteristic function of a normal distribution with mean (µ1 + µ2) and
variance (σ2

1 + σ2
2).

Example 1.11 Let X ∼ N(0, 1), Y ∼ χ2
m and Z ∼ χ2

n be independent. Then

X√
Y/m

∼ Student’s t(m),

Y/m

Z/n
∼ Snedecor’s Fm,n,

Y

Y + Z
∼ Beta(m/2, n/2),

where

ft(m)(x) =
Γ((m+ 1)/2)√
πmΓ(m/2)

1

(1 + x2/m)(m+1)/2
I(−∞,∞)(x),

fFm,n(x) =
Γ(m+ n)/2

Γ(m/2)Γ(n/2)

(m/n)m/2xm/2−1

(1 +mx/n)(m+n)/2
I(0,∞)(x),

fBeta(a,b) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1I(0 < x < 1).

Example 1.12 If Y1, ..., Yn+1 are i.i.d Exp(θ), then

Zi =
Y1 + . . .+ Yi
Y1 + . . .+ Yn+1

∼ Beta(i, n− i + 1).

Particularly, (Z1, . . . , Zn) has the same joint distribution as that of the order statistics (ξn:1, ..., ξn:n)
of n Uniform(0,1) random variables.

Both the results in Example 1.11 and 1.12 can be derived using the formulae at the beginning
of this section. We now start to examine the transformation of random variables (vectors).
Especially, the following theorem holds.

Theorem 1.3 Suppose thatX is k-dimension random vector with density function fX(x1, ..., xk).
Let g be a one-to-one and continuously differentiable map from Rk to Rk. Then Y = g(X) is
a random vector with density function

fX(g−1(y1, ..., yk))|Jg−1(y1, ..., yk)|,
where g−1 is the inverse of g and Jg−1 is the Jacobian of g−1. †

The proof is simply based on the variable-transformation in integration. One application of
this result is given in the following example.

Example 1.13 Let X and Y be two independent standard normal random variables. Consider
the polar coordinate of (X, Y ), i.e., X = R cos Θ and Y = R sin Θ. Then Theorem 1.3 gives
that R2 and Θ are independent and moreover, R2 ∼ Exp{2} and Θ ∼ Uniform(0, 2π). As an
application, if one can simulate variables from a uniform distribution (Θ) and an exponential
distribution (R2), then using X = R cos Θ and Y = R sin Θ produces variables from a standard
normal distribution. This is exactly the way normally distributed numbers are generated in
most statistical packages.
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1.4 Multivariate Normal Distribution

One particular distribution we will encounter in larger-sample theory is the multivariate normal
distribution. A random vector Y = (Y1, ..., Yn)′ is said to have a multivariate normal distribution
with mean vector µ = (µ1, ..., µn)′ and non-degenerate covariance matrix Σn×n, denoted as
N(µ,Σ) or Nn(µ,Σ) to emphasize Y ’s dimension, if Y has a joint density as

fY (y1, ..., yn) =
1

(2π)n/2|Σ|1/2 exp{−1

2
(y − µ)′Σ−1(y − µ)}.

We can derive the characteristic function of Y using the following ad hoc way:

φY (t) = E[eit′Y ]

=
1

(2π)n/2|Σ|1/2
∫

exp{it′y − 1

2
(y − µ)′Σ−1(y − µ)}dy

=
1

(2π)n/2|Σ|1/2
∫

exp{−1

2
y′Σ−1y + (it + Σ−1µ)′y − µ′Σ−1µ

2
}dy

=
exp{−µ′Σ−1µ/2}

(2π)n/2|Σ|1/2
∫

exp

{
−1

2
(y − Σit− µ)′Σ−1(y − Σit− µ)

+
1

2
(Σit+ µ)′Σ−1(Σit + µ)

}
dy

= exp{it′µ− 1

2
t′Σt}.

Particularly, if Y has standard multivariate normal distribution with mean zero and covariance
In×n, φY (t) = exp{−t′t/2}.

The following theorem describes the properties of a multivariate normal distribution.

Theorem 1.4 If Y = An×kXk×1 where X ∼ Nk(0, I) (standard multivariate normal distribu-
tion), then Y ’s characteristic function is given by

φY (t) = exp {−t′Σt/2} , t = (t1, ..., tn) ∈ Rk,

where Σ = AA′ and rank(Σ) = rank(A). Conversely, if φY (t) = exp{−t′Σt/2} with Σn×n ≥ 0
of rank k, then, for some n× k matrix A for which AA′ = Σ,

Y = An×kXk×1 with rank(A) = k and X ∼ Nk(0, I).

†

Proof

φY (t) = E[exp{it′(AX)}] = E[exp{i(A′t)′X}] = exp{−(A′t)′(A′t)/2} = exp{−t′AA′t/2}.

Thus, Σ = AA′ and rank(Σ) = rank(A). Conversely, if φY (t) = exp{−t′Σt/2}, then from
matrix theory, there exist an orthogonal matrix O such that Σ = O′DO, where D is a diagonal
matrix with first k diagonal elements positive and the rest (n− k) elements being zero. Denote
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these positive diagonal elements as d1, ..., dk. Define Z = OY . Then the characteristic function
for Z is given by

φZ(t) = E[exp{it ′(OY )}] = E [exp{i(O ′t)′Y }] = exp{−(O ′t)′Σ (O ′t)/2}

= exp{−d1t
2
1/2− ...− dkt2k/2}.

This implies that Z1, ..., Zk are independent N(0, d1), ..., N(0, dk) and Zk+1 = ... = Zn = 0. Let
Xi = Zi/

√
di for i = 1, ..., k and write O′ = (Bn×k, Cn×(n−k)). Then

Y = O′Z = Bn×k



Z1
...
Zk


 = Bn×kdiag{(

√
d1, ...,

√
dk)}



X1
...
Xk


 ≡ AX.

Clearly, rank(A) = k. †

Theorem 1.5 Suppose that Y = (Y1, ..., Yk, Yk+1, ..., Yn)′ has a multivariate normal distribution

with mean µ = (µ(1)′, µ(2)′)′ and a non-degenerate covariance matrix

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Then
(i) (Y1, ..., Yk)

′ ∼ Nk(µ
(1),Σ11).

(ii) (Y1, ..., Yk)
′ and (Yk+1, ..., Yn)′ are independent if and only if Σ12 = Σ21 = 0.

(iii) For any matrix Am×n, AY has a multivariate normal distribution with mean Aµ and co-
variance AΣA′.
(iv) The conditional distribution of Y (1) = (Y1, ..., Yk)

′ given Y (2) = (Yk+1, ..., Yn)′ is a multi-
variate normal distribution given as

Y (1)|Y (2) ∼ Nk(µ
(1) + Σ12Σ−1

22 (Y (2) − µ(2)),Σ11 − Σ12Σ−1
22 Σ21).

†

Proof (i) From Theorem 1.4, we obtain that the characteristic function for (Y1, ..., Yk) − µ(1)

is given by exp{−t′(DΣ)(DΣ)′t/2}, where D = (Ik×k 0k×(n−k)). Thus, the characteristic
function is equal to

exp {−(t1, ..., tk)Σ11(t1, ..., tk)
′/2} ,

which is the same as the characteristic function from Nk(0,Σ11).
(ii) The characteristics function for Y can be written as

exp

[
it(1) ′µ(1) + it(2) ′µ(2) − 1

2

{
t(1)′Σ11t

(1) + 2t(1)′Σ12t
(2) + t(2) ′Σ22t

(2)
}]

.

If Σ12 = 0, the characteristics function can be factorized as the product of the separate functions
for t(1) and t(2). Thus, Y (1) and Y (2) are independent. The converse is obviously true.
(iii) The result follows from Theorem 1.4.
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(iv) Consider Z(1) = Y (1)−µ(1)−Σ12Σ−1
22 (Y (2)−µ(2)). From (iii), Z(1) has a multivariate normal

distribution with mean zero and covariance calculated by

Cov(Z(1), Z(1)) = Cov(Y (1), Y (1))− 2Σ12Σ−1
22 Cov(Y (2), Y (1)) + Σ12Σ−1

22 Cov(Y (2), Y (2))Σ−1
22 Σ21

= Σ11 − Σ12Σ−1
22 Σ21.

On the other hand,

Cov(Z(1), Y (2)) = Cov(Y (1), Y (2))− Σ12Σ−1
22 Cov(Y (2), Y (2)) = 0.

From (ii), Z(1) is independent of Y (2). Then the conditional distribution Z(1) given Y (2) is the
same as the unconditional distribution of Z (1); i.e.,

Z(1)|Y (2) ∼ N(0,Σ11 − Σ12Σ−1
22 Σ21).

The result follows. †

With normal random variables, we can use algebra of random variables to construct a
number of useful distributions. The first one is the Chi-square distribution. Suppose X ∼
Nn(0, I), then ‖X‖2 =

∑n
i=1 X

2
i ∼ χ2

n, the chi-square distribution with n degrees of freedom.
One can use the convolution formula to obtain that the density function for χ2

n is equal to the
density for the Gamma(n/2, 2), denoted by g(y;n/2, 1/2).

Corollary 1.1 If Y ∼ Nn(0,Σ) with Σ > 0, then Y ′Σ−1Y ∼ χ2
n. †

Proof Since Σ > 0, there exists a positive definite matrix A such that AA′ = Σ. Then
X = A−1Y ∼ Nn(0, I). Thus

Y ′Σ−1Y = X ′X ∼ χ2
n.

†

Suppose X ∼ N(µ, 1). Define Y = X2, δ = µ2. Then Y has density

fY (y) =
∞∑

k=0

pk(δ/2)g(y; (2k+ 1)/2, 1/2),

where pk(δ/2) = exp(−δ/2)(δ/2)k/k!. Another ways to obtain this is: Y |K = k ∼ χ2
2k+1 where

K ∼ Poisson(δ/2). We say Y has the noncentral chi-square distribution with 1 degree of free-
dom and noncentrality parameter δ and write Y ∼ χ2

1(δ). More generally, if X = (X1, ..., Xn)′ ∼
Nn(µ, I) and let Y = X ′X, then Y has a density fY (y) =

∑∞
k=0 pk(δ/2)g(y; (2k + n)/2, 1/2)

where δ = µ′µ. We write Y ∼ χ2
n(δ) and say Y has a noncentral chi-square distribution with n

degrees of freedom and noncentrality parameter δ. It is then easy to show that if X ∼ N(µ,Σ),
then Y = X ′Σ−1X ∼ χ2

n(δ).
If X ∼ N(0, 1), Y ∼ χ2

n and they are independent, then X/
√
Y/n is called the t-distribution

with n degrees of freedom. If Y1 ∼ χ2
m, Y2 ∼ χ2

n and Y1 and Y2 are independent, then
(Y1/m)/(Y2/m) is called an F-distribution with degrees freedom of m and n. These distri-
butions have already been introduced in Example 1.11.
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1.5 Families of Distributions

In Examples 1.1-1.12, we have listed a number of different distributions. Interestingly, a number
of them can be unified into a family of general distribution form. One advantage of this
unification is that in order to study the properties of each distribution within the family, we
can examine this family as a whole.

The first family of distributions is called the location-scale family. Suppose that X has a
density function fX(x). Then the location-scale family based on X consists of all the distribu-
tions generated by aX + b where a is a positive constant (scale parameter) and b is a constant
called the location parameter. We notice that distributions such as N(µ, σ2), Uniform(a, b),
Cauchy(µ, σ) belong to the location-scale family. For a location-scale family, we can easily see
that aX + b has a density fX((y− b)/a)/a and it has mean aE[X] + b and variance a2var(X).

The second important family, which we will discuss in more detail, is called the exponential
family. In fact, many examples of either univariate or multivariate distributions, including bino-
mial, poisson distributions for discrete variables and normal distribution, gamma distribution,
and beta distribution for continuous variables, belong to some exponential family. Especially,
a family of distributions, {Pθ}, is said to form an s-parameter exponential family if the distri-
butions Pθ have densities (with respect to some common dominating measure µ) of the form

pθ(x) = exp

{
s∑

k=1

ηk(θ)Tk(x)− B(θ)

}
h(x).

Here ηi and B are real-valued functions of θ and Ti are real-value functions of x. When
{ηk(θ)} = θ, the above form is called the canonical form of the exponential family. Clearly, it
stipulates that

exp{B(θ)} =

∫
exp{

s∑

k=1

ηk(θ)Tk(x)}h(x)dµ(x) <∞.

Example 1.14 X1, ..., Xn are i.i.d according to N(µ, σ2). Then the joint density of (X1, ..., Xn)
is given by

exp

{
µ

σ2

n∑

i=1

xi −
1

2σ2

n∑

i=1

x2
i −

n

2σ2
µ2

}
1

(
√

2πσ)n
.

Then η1(θ) = µ/σ2, η2(θ) = −1/2σ2, T1(x1, ..., xn) =
∑n

i=1 xi, and T2(x1, ..., xn) =
∑n

i=1 x
2
i .

Example 1.15 X has binomial distribution Binomial(n, p). The distribution of X = x can
written as

exp{x log
p

1− p + n log(1− p)}
(
n

x

)
.

Clearly, η(θ) = log(p/(1− p)) and T (x) = x.

Example 1.16 X has poisson distribution with poisson rate λ. Then

P (X = x) = exp{x logλ− λ}/x!.

Thus, η(θ) = log λ and T (x) = x.
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Since the exponential family covers a number of familiar distributions, one can study the
exponential family as a whole to obtain some general results applicable to all the members
within the family. One result is to derive the moment generation function for (T1, ..., Ts), which
is defined as

MT (t1, ..., ts) = E [exp{t1T1 + ...+ tsTs}] .
Note that the coefficients in the Taylor expansion ofMT correspond to the moments of (T1, ..., Ts).

Theorem 1.6 Suppose the densities of an exponential family can be written as the canonical
form

exp{
s∑

k=1

ηkTk(x)− A(η)}h(x),

where η = (η1, ..., ηs)
′. Then for t = (t1, ..., ts)

′,

MT (t) = exp{A(η + t)− A(η)}.

†

Proof It follows from that

MT (t) = E [exp{t1T1 + ... + tsTs}] =

∫
exp{

s∑

k=1

(ηi + ti)Ti(x)− A(η)}h(x)dµ(x)

and

exp{A(η)} =

∫
exp{

s∑

k=1

ηiTi(x)}h(x)dµ(x).

†

Therefore, for an exponential family with canonical form, we can apply Theorem 1.6 to
calculate moments of some statistics. Another generating function is called the cumulant gen-
erating function defined as

KT (t1, ..., ts) = logMT (t1, ..., ts) = A(η + t)− A(η).

Its coefficients in the Taylor expansion are called the cumulants for (T1, ..., Ts).

Example 1.17 In normal distribution of Example 1.14 with n = 1 and σ2 fixed, η = µ/σ2 and

A(η) =
1

2σ2
µ2 = η2σ2/2.

Thus, the moment generating function for T = X is equal to

MT (t) = exp{σ
2

2
((η + t)2 − η2)} = exp{µt+ t2σ2/2}.

From the Taylor expansion, we can obtain that the moments of X, whose mean is zero (µ = 0),
is given by

E[X2r+1] = 0, E[X2r] = 1 · 2 · · · (2r − 1)σ2r, r = 1, 2, ...
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Example 1.18 X has a gamma distribution with density

1

Γ(a)ba
xa−1e−x/b, x > 0.

For fixed a, it has a canonical form

exp{−x/b + (a− 1) log x− log(Γ(a)ba)}I(x > 0).

Correspondingly, η = −1/b, T = X,A(η) = log(Γ(a)ba) = a log(−1/η) + log Γ(a). Then the
moment generating function for T = X is given by

MX(t) = exp{a log
η

η + t
} = (1− bt)−a.

After Taylor expansion around zero, we obtain

E[X] = ab, E[X2] = ab2 + (ab)2, ...

As a further note, the exponential family has an important role in classical statistical infer-
ence since it possesses many nice statistical properties. We will revisit this in Chapter 4.

READING MATERIALS : You should read Lehmann and Casella, Sections 1.4 and 1.5.

PROBLEMS

1. Verify the densities of t(m) and Fm,n in Example 1.11.

2. Verify the two results in Example 1.12.

3. Suppose X ∼ N(ν, 1). Show that Y = X2 has a density

fY (y) =
∞∑

k=0

pk(µ
2/2)g(y; (2k + 1)/2, 1/2),

where pk(µ
2/2) = exp(−µ2/2)(µ2/2)k/k! and g(y;n/2, 1/2) is the density ofGamma(n/2, 2).

4. Suppose X = (X1, ..., Xn) ∼ N(µ, I) and let Y = X ′X. Show that Y has a density

fY (y) =
∞∑

k=0

pk(µ
′µ/2)g(y; (2k+ n)/2, 1/2).

5. Let X ∼ Gamma(α1, β) and Y ∼ Gamma(α2, β) be independent random variables.
Derive the distribution of X/(X + Y ).
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6. Show that for any random variables X, Y and Z,

Cov(X, Y ) = E[Cov(X, Y |Z)] + Cov(E[X|Z], E[Y |Z]),

where Cov(X, Y |Z) is the conditional covariance of X and Y given Z.

7. LetX and Y be i.i.d Uniform(0,1) random variables. Define U = X−Y , V = max(X, Y ) =
X ∨ Y .

(a) What is the range of (U, V )?

(b) find the joint density function fU,V (u, v) of the pair (U, V ). Are U and V indepen-
dent?

8. Suppose that for θ ∈ R,

fθ(u, v) = {1 + θ(1− 2u)(1− 2v)} I(0 ≤ u ≤ 1, 0 ≤ v ≤ 1).

(a) For what values of θ is fθ a density function in [0, 1]2?

(b) For the set of θ’s identified in (a), find the corresponding distribution function Fθ
and show that it has Uniform(0,1) marginal distributions.

(c) If (U, V ) ∼ fθ, compute the correlation ρ(U, V ) ≡ ρ as a function of θ.

9. Suppose that F is the distribution function of random variables X and Y with X ∼
Uniform(0, 1) marginally and Y ∼ Uniform(0, 1) marginally. Thus, F (x, y) satisfies

F (x, 1) = x, 0 ≤ x ≤ 1, and F (1, y) = y, 0 ≤ y ≤ 1.

(a) Show that
F (x, y) ≤ x ∧ y

for all 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Here x ∧ y = min(x, y) and we denote it as FU(x, y).

(b) Show that
F (x, y) ≥ (x + y − 1)+

for all 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Here (x + y − 1)+ = max(x + y − 1, 0) and we denote
it as FL(x, y).

(c) Show that FU is the distribution function of (X,X) and FL is the distribution func-
tion of (X, 1−X).

10. (a) If W ∼ χ2
2 = Gamma(1, 2), find the density of W , the distribution function W and

the inverse distribution function explicitly.

(b) Suppose that (X, Y ) ∼ N(0, I2×2). In two-dimensional plane, let R be the distance
of (X, Y ) from (0, 0) and θ be the angle between the line from (0,0) to (X,Y) and
the right-half line of x-axis. Then X = R cos Θ and Y = R sin Θ. Show that R and
Θ are independent random variables with R2 ∼ χ2

2 and Θ ∼ Uniform(0, 2π).

(c) Use the above two results to show how to use two independent Uniform(0,1) random
variables U and V to generate two standard normal random variables. Hint: use one
result that if X has a distribution function F then F (X) has a uniform distribution
in [0, 1].
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11. Suppose that X ∼ F on [0,∞), Y ∼ G on [0,∞), and X and Y are independent random
variables. Let Z = min{X, Y } = X ∧ Y and ∆ = I(X ≤ Y ).

(a) Find the joint distribution of (Z,∆).

(b) If X ∼ Exponential(λ) and Y ∼ Exponential(µ), show that Z and ∆ are indepen-
dent.

12. Let X1, ..., Xn be i.i.d N(0, σ2). (w1, ..., wn) is a constant vector such that w1, ..., wn > 0
and w1 + ...+ wn = 1. Define X̄nw =

√
w1X1 + ...+

√
wnXn. Show that

(a) Yn = X̄nw/σ ∼ N(0, 1).

(b) (n− 1)S2
n/σ

2 = (
∑n

i=1 X
2
i − X̄2

nw)/σ2 ∼ χ2
n−1.

(c) Yn and S2
n are independent so Tn = Yn/

√
S2
n ∼ tn−1/σ.

(d) when w1 = ... = wn = 1/n, show that Yn is the standardized sample mean and S2
n is

the sample variance.

Hint: Consider an orthogonal matrix Σ such that the first row is (
√
w1, ...,

√
wn). Let



Z1
...
Zn


 = Σ



X1
...
Xn


 .

Then Yn = Z1/σ and (n− 1)S2
n/σ

2 = (Z2
2 + ... + Z2

n)/σ2.

13. Let Xn×1 ∼ N(0, In×n). Suppose that A is a symmetric matrix with rank r. Then
X ′AX ∼ χ2

r if and only if A is a projection matrix (that is, A2 = A). Hint: use the
following result from linear algebra: for any symmetric matrix, there exits an orthogonal
matrix O such that A = O′ diag((d1, ..., dn))O; A is a projection matrix if and only if
d1, ..., dn take values of 0 or 1’s.

14. Let Wm ∼ Negative Binomial(m, p). Consider p as a parameter.

(a) Write the distribution as an exponential family.

(b) Use the result for the exponential family to derive the moment generating function
of Wm, denoted by M(t).

(c) Calculate the first and the second cumulants of Wm. By definition, in the expansion
of the cumulant generating function,

logM(t) =

∞∑

k=0

µk
k!
tk,

µk is the kth cumulant of Wm. Note that these two cumulants are exactly the mean
and the variance of Wm.

15. For the density C exp
{
−|x|1/2

}
,−∞ < x < ∞, where C is the normalizing constant,

show that moments of all orders exist but the moment generating function exists only at
t = 0.
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16. Lehmann and Casella, page 64, problem 4.2.

17. Lehmann and Casella, page 66, problem 5.6.

18. Lehmann and Casella, page 66, problem 5.7.

19. Lehmann and Casella, page 66, problem 5.8.

20. Lehmann and Casella, page 66, problem 5.9.

21. Lehmann and Casella, page 66, problem 5.10.

22. Lehmann and Casella, page 67, problem 5.12.

23. Lehmann and Casella, page 67, problem 5.14.



CHAPTER 2 MEASURE,
INTEGRATION AND
PROBABILITY

This chapter is an introduction to (probability) measure theories, a foundation for all the
probabilistic and statistical framework. We first give the definition of a measure space. Then
we introduce measurable functions in a measure space and the integration and convergence of
measurable functions. Further generalization including the product of two measures and the
Radon-Nikodym derivatives of two measures is introduced. As a special case, we describe how
the concepts and the properties in measure space are used in parallel in a probability measure
space.

2.1 A Review of Set Theory and Topology in Real Space

We review some basic concepts in set theory. A set is a collection of elements, which can be a
collection of real numbers, a group of abstract subjects and etc. In most of cases, we consider
that these elements come from one largest set, called a whole space. By custom, a whole space
is denoted by Ω so any set is simply a subset of Ω. We can exhaust all possible subsets of Ω
then the collection of all these subsets is denoted as 2Ω, called the power set of Ω. We also
include the empty set, which has no element at all and is denoted by ∅, in this power set.

For any two subsets A and B of the whole space Ω, A is said to be a subset of B if B contains
all the elements of A, denoted as A ⊆ B. For arbitrary number of sets {Aα : α is some index},
where the index of α can be finite, countable or uncountable, we define the intersection of these
sets as the set which contains all the elements common to Aα for any α. The intersection of
these sets is denoted as ∩αAα. Aα’s are disjoint if any two sets have empty intersection. We
can also define the union of these sets as the set which contains all the elements belonging to
at least one of these sets, denoted as ∪αAα. Finally, we introduce the complement of a set A,
denoted by Ac, to be the set which contains all the elements not in A. Among the definitions
of set intersection, union and complement, the following relationships are clear: for any B and
{Aα},

B ∩ {∪αAα} = ∪α {B ∩ Aα} , B ∪ {∩αAα} = ∩α {B ∪ Aα} ,
{∪αAα}c = ∩αAcα, {∩αAα}c = ∪αAcα. ( de Morgan law)

Sometimes, we use (A − B) to denote a subset of A excluding any elements in B. Thus
(A − B) = A ∩ Bc. Using this notation, we can always partition the union of any countable

17
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sets A1, A2, ... into a union of countable disjoint sets:

A1 ∪ A2 ∪ A3 ∪ ... = A1 ∪ (A2 − A1) ∪ (A3 − A1 ∪ A2) ∪ ...

For a sequence of sets A1, A2, A3, ..., we now define the limit sets of the sequence. The upper
limit set of the sequence is the set which contains the elements belonging to infinite number
of the sets in this sequence; the lower limit set of the sequence is the set which contains the
elements belonging to all the sets except a finite number of them in this sequence. The former
is denoted by limnAn or lim supnAn and the latter is written as limnAn or lim infnAn. We can
show

lim sup
n
An = ∩∞n=1 {∪∞m=nAm} , lim inf

n
An = ∪∞n=1 {∩∞m=nAm} .

When both limit sets agree, we say that the sequence has a limit set. In the calculus, we know
that for any sequence of real numbers x1, x2, ..., it has a upper limit, lim supn xn, and a lower
limit, lim infn xn, where the former refers to the upper bound of the limits for any convergent
subsequences and the latter is the lower bound. It should be cautious that such upper limit or
lower limit is different from the upper limit or lower limit of sets.

The second part of this section reviews some basic topology in a real line. Because the
distance between any two points is well defined in a real line, we can define a topology in a real
line. A set A of the real line is called an open set if for any point x ∈ A, there exists an open
interval (x− ε, x+ ε) contained in A. Clearly, any open interval (a, b) where a could be −∞ and
b could be ∞, is an open set. Moreover, for any number of open sets Aα where α is an index,
it is easy to show that ∪αAα is open. A closed set is defined as the complement of an open set.
It can also be show that A is closed if and only if for any sequence {xn} in A such that xn → x,
x must belong to A. By the de Morgan law, we also see that the intersection of any number
of closed sets is still closed. Only ∅ and the whole real line are both open set and closed set;
there are many sets neither open or closed, for example, the set of all the rational numbers. If
a closed set A is bounded, A is also called a compact set. These basic topological concepts will
be used later. Note that the concepts of open set or closed set can be easily generalized to any
finite dimensional real space.

2.2 Measure Space

2.2.1 Introduction

Before we introduce a formal definition of measure space, let us examine the following examples.

Example 2.1 Suppose that a whole space Ω contains countable number of distinct points
{x1, x2, ...}. For any subset A of Ω, we define a set function µ#(A) as the number of points in
A. Therefore, if A has n distinct points, µ#(A) = n; if A has infinite many number of points,
then µ#(A) = ∞. We can easily show that (a) µ#(∅) = 0; (b) if A1, A2, ... are disjoint sets of
Ω, then µ#(∪nAn) =

∑
n µ

#(An). We will see later that µ# is a measure called the counting
measure in Ω.

Example 2.2 Suppose that the whole space Ω = R, the real line. We wish to measure the sizes
of any possible subsets in R. Equivalently, we wish to define a set function λ which assigns
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some non-negative values to the sets of R. Since λ measures the size of a set, it is clear that
λ should satisfy (a) λ(∅) = 0; (b) for any disjoint sets A1, A2, ... whose sizes are measurable,
λ(∪nAn) =

∑
n λ(An). Then the question is how to define such a λ. Intuitively, for any interval

(a, b], such a value can be given as the length of the interval, i.e., (b − a). We can further
define λ-value of any set in B0, which consists of ∅ together with all finite unions of disjoint
intervals with the form ∪ni=1(ai, bi], or ∪ni=1(ai, bi] ∪ (an+1,∞), (−∞, bn+1] ∪ ∪ni=1(ai, bi], with
ai, bi ∈ R, as the total length of the intervals. But can we go beyond it, as the real line has far
far many sets which are not intervals, for example, the set of rational numbers? In other words,
is it possible to extend the definition of λ to more sets beyond intervals while preserving the
values for intervals? The answer is yes and will be given shortly. Moreover, such an extension
is unique. Such set function λ is called the Lebesgue measure in the real line.

Example 2.3 This example simply asks the same question as in Example 2.2, but now on
k-dimensional real space. Still, we define a set function which assigns any hypercube its volume
and wish to extend its definition to more sets beyond hypercubes. Such a set function is called
the Lebesgue measure in Rk, denoted as λk.

From the above examples, we can see that three pivotal components are necessary in defining
a measure space:

(i) the whole space, Ω, for example, {x1, x2, ...} in Example 2.1, R and Rk in the last two
examples,

(ii) a collection of subsets whose sizes are measurable, for example, all the subsets in Example
2.1, the unknown collection of subsets including all the intervals in Example 2.2,

(iii) a set function which assigns negative values (sizes) to each set of (ii) and satisfies properties
(a) and (b) in the above examples.

For notation, we use (Ω,A, µ) to denote each of them; i.e., Ω denotes the whole space, A
denotes the collection of all the measurable sets, and µ denotes the set function which assigns
non-negative values to all the sets in A.

2.2.2 Definition of a measure space

Obviously, Ω should be a fixed non-void set. The main difficulty is the characterization of A.
However, let us understand intuitively what kinds of sets should be in A: as a reminder, A
contains the sets whose sizes are measurable. Now suppose that a set A in A is measurable
then we would think that its complement is also measurable, intuitively, the size of the whole
space minus the size of A. Additionally, if A1, A2, ... are in A so are measurable, then we should
be able to measure the total size of A1, A2, ..., i.e, the union of these sets. Hence, as expected,
A should include the complement of a set which is in A and the union of any countable number
of sets which are in A. This turns out that A must be a σ-field, whose definition is given below.

Definition 2.1 (fields, σ-fields) A non-void class A of subsets of Ω is called a:
(i) field or algebra if A,B ∈ A implies that A ∪ B ∈ A and Ac ∈ A; equivalently, A is closed
under complements and finite unions.
(ii) σ-field or σ-algebra if A is a field and A1, A2, ... ∈ A implies ∪∞i=1Ai ∈ A; equivalently, A is
closed under complements and countable unions. †
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In fact, a σ-field is not only closed under complement and countable union but also closed
under countable intersection, as shown in the following proposition.

Proposition 2.1. (i) For a field A, ∅,Ω ∈ A and if A1, ..., An ∈ A, ∩ni=1Ai ∈ A.
(ii) For a σ-field A, if A1, A2, ... ∈ A, then ∩∞i=1Ai ∈ A. †

Proof (i) For any A ∈ A, Ω = A ∪ Ac ∈ A. Thus, ∅ = Ωc ∈ A. If A1, ..., An ∈ A then
∩ni=1Ai = (∪ni=1A

c
i)
c ∈ A.

(ii) can be shown using the definition of a (σ-)field and the de Morgan law. †

We now give a few examples of σ-field or field.

Example 2.4 The class A = {∅,Ω} is the smallest σ-field and 2Ω = {A : A ⊂ Ω} is the largest
σ-field. Note that in Example 2.1, we choose A = 2Ω since each set of A is measurable.

Example 2.5 Recall B0 in Example 2.2. It can be checked that B0 is a field but not a σ-field,
since (a, b) = ∪∞n=1(a, b− 1

n
] does not belong to B0.

After defining a σ-field A on Ω, we can start to introduce the definition of a measure. As
implicated before, a measure can be understood as a set-function which assigns non-negative
value to each set in A. However, the values assigned to the sets of A are not arbitrary and they
should be compatible in the following sense.

Definition 2.2 (measure, probability measure) (i) A measure µ is a function from a σ-field
A to [0,∞) satisfying: µ(∅) = 0; µ(∪∞n=1An) =

∑∞
n=1 µ(An) for any countable (finite) disjoint

sets A1, A2, ... ∈ A. The latter is called the countable additivity.
(ii) Additionally, if µ(Ω) = 1, µ is a probability measure and we usually use P instead of µ to
indicate a probability measure. †

The following proposition gives some properties of a measure.

Proposition 2.2 (i) If {An} ⊂ A and An ⊂ An+1 for all n, then µ(∪∞n=1An) = limn→∞ µ(An).
(ii) If {An} ⊂ A, µ(A1) <∞ and An ⊃ An+1 for all n, then µ(∩∞n=1An) = limn→∞ µ(An).
(iii) For any {An} ⊂ A, µ(∪nAn) ≤∑n µ(An) (countable sub-additivity). †

Proof (i) It follows from

µ(∪∞n=1An) = µ(A1 ∪ (A2 − A1) ∪ ...) = µ(A1) + µ(A2 − A1) + ....

= lim
n
{µ(A1) + µ(A2 − A1) + ...+ µ(An − An−1)} = lim

n
µ(An).

(ii) First,

µ(∩∞n=1An) = µ(A1)− µ(A1 − ∩∞n=1An) = µ(A1)− µ(∪∞n=1(A1 ∩ Acn)).

Then since A1 ∩ Acn is increasing, from (i), the second term is equal to limn µ(A1 ∩ Acn) =
µ(A1)− limn µ(An). (ii) thus holds.
(iii) From (i), we have

µ(∪nAn) = lim
n
µ(A1 ∪ ... ∪ An) = lim

n

{
n∑

i=1

µ(Ai − ∪j<iAj)
}
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≤ lim
n

n∑

i=1

µ(Ai) =
∑

n

µ(An).

The result holds. † .

If a class of sets {An} is increasing or decreasing, we can treat ∪nAn or ∩nAn as its limit
set. Then Proportion 2.2 says that such a limit can be taken out of the measure for increasing
sets and it can be taken out of the measure for decreasing set if the measure of some An is
finite. For an arbitrary sequence of sets {An}, in fact, similar to Proposition 2.2, we can show

µ(lim inf
n
An) = lim

n
µ(∩∞k=nAn) ≤ lim inf

n
µ(An).

The triplet (Ω,A, µ) is called a measure space. Any set in A is called a measurable set.
Particularly, if µ = P is a probability measure, (Ω,A, P ) is called a probability measure space,
abbreviated as probability space; an element in Ω is called a probability sample and a set in A
is called a probability event. As an additional note, a measure µ is called σ-finite if there exists
a countable sets {Fn} ⊂ A such that Ω = ∪nFn and for each Fn, µ(Fn) <∞.

Example 2.6 (i) A measure µ on (Ω,A) is discrete if there are finitely or countably many
points ωi ∈ Ω and masses mi ∈ [0,∞) such that

µ(A) =
∑

ωi∈A
mi, A ∈ A.

Some examples include probability measures in discrete distributions.
(ii) in Example 2.1, we define a counting measure µ# in a countable space. This definition can
be generalized to any space. Especially, a counting measure in the space R is not σ-finite.

2.2.3 Construction of a measure space

Even though (Ω,A, µ) is well defined, a practical question is how to construct such a measure
space. In the specific Example 2.2, one asks whether we can find a σ-field including all the
intervals of B0 and on this σ-field, whether we can define a measure λ such that λ assigns any
interval its length. Even more general, suppose that we have a class of sets C and a set function
µ satisfying property (i) of Definition 2.2. Can we find a σ-field which contains all the sets
of C and moreover, can we obtain a measure defined for any set of this σ-field such that the
measure agrees with µ in C? The answer is positive for the first question and is positive for
the second question when C is a field. Indeed, such a σ-field is the smallest σ-field containing
all the sets of C, called σ-field generated by C, and such a measure can be obtained using the
measure extension result as given below.

First, we show that the σ-field generated by C exists and is unique.

Proposition 2.3 (i) Arbitrary intersections of fields (σ-fields) are fields (σ-fields).
(ii) For any class C of subsets of Ω, there exists a minimal σ-field containing C and we denote
it as σ(C). †

Proof (i) can be shown using the definitions of a (σ-)field. For (ii), we define

σ(C) = ∩C⊂A,A is σ-fieldA,
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i.e., the intersection of all the σ-fields containing C. From (i), this class is also σ-field. Obviously,
it is the minimal one among all the σ-fields containing C. †

Then the following result shows that an extension of µ to σ(C) is possible and unique if C
is a field.

Theorem 2.1 (Caratheodory Extension Theorem) A measure µ on a field C can be
extended to a measure on the minimal σ-field σ(C). If µ is σ-finite on C, then the extension is
unique and also σ-finite. †

Proof The proof is skipped. Essentially, we define an extension of µ using the following outer
measure definition: for any set A,

µ∗(A) = inf

{ ∞∑

i=1

µ(Ai) : Ai ∈ C, A ⊂ ∪∞i=1Ai

}
.

This is also the way of calculating the measure of any set in σ(C). †

Using the above results, we can construct many measure spaces. In Example 2.2, we first
generate a σ-field containing all the intervals of B0. Such a σ-field is called the Borel σ-field,
denoted by B, and any set in B is called a Borel set. Then we can extend λ to B and the obtained
measure is called the Lebesgue measure. The triplet (R,B, λ) is named the Borel measure space.
Similarly, in Example 2.3, we can obtain the Borel measure space in Rk, denoted by (Rk,Bk, λk).

We can also obtain many different measures in the Borel σ-field. To do that, let F be a
fixed generalized distribution function: F is non-decreasing and right-continuous. Then starting
from any interval (a, b], we define a set function λF ((a, b]) = F (b)−F (a) thus λF can be easily
defined for any set of B0. Using the σ-field generation and measure extension, we thus obtain
a different measure λF in B. Such a measure is called the Lebesgue-Stieltjes measure generated
by F . Note that the Lebesuge measure is a special case with F (x) = x. Particularly, if F is a
distribution function, i.e., F (∞) = 1 and F (−∞) = 0, this measure is a probability measure
in R.

In a measure space (Ω,A, µ), it is intuitive to assume that any subsets of a set with measure
zero should be given measure zero. However, these subsets may not be included inA. Therefore,
a final stage of constructing a measure space is to perform the completion by including such
nuisance sets in the σ-field. Especially, a general definition of the completion of a measure is
given as follows: for a measure space (Ω,A, µ), a completion is another measure space (Ω, Ā, µ̄)
where

Ā = {A ∪N : A ∈ A, N ⊂ B for some B ∈ A such that µ(B) = 0}
and let µ̄(A∪N) = µ(A). Particularly, the completion of the Borel measure space is called the
Lebesgue measure space and the completed Borel σ-field is called the σ-field of Lebesgue sets.
From now on, we always assume that a measure space is completed.
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2.3 Measurable Function and Integration

2.3.1 Measurable function

In measure theory, functions defined on a measure space are more interesting and important,
as compared to measure space itself. Specially, only so-called measurable functions are useful.

Definition 2.3 (measurable function) Let X : Ω 7→ R be a function defined on Ω. X is
measurable if for x ∈ R, the set {ω ∈ Ω : X(ω) ≤ x} is measurable, equivalently, belongs to A.
Especially, if the measure space is a probability measure space, X is called a random variable.
†

Hence, for a measurable function, we can evaluate the size of the set such like X−1((−∞, x]).
In fact, the following proposition concludes that for any Borel set B ∈ B, X−1(B) is a measur-
able set in A.

Proposition 2.4 If X is measurable, then for any B ∈ B, X−1(B) = {ω : X(ω) ∈ B} is
measurable. †

Proof We defined a class as below:

B∗ =
{
B : B ⊂ R,X−1(B) is measurable in A

}
.

Clearly, (−∞, x] ∈ B∗. Furthermore, if B ∈ B∗, then X−1(B) ∈ A. Thus, X−1(Bc) =
Ω−X−1(B) ∈ A then Bc ∈ B∗. Moreover, if B1, B2, ... ∈ B∗, then X−1(B1), X−1(B2), ... ∈ A.
Thus, X−1(B1 ∪ B2 ∪ ...) = X−1(B1) ∪X−1(B2) ∪ ... ∈ A. So B1 ∪B2 ∪ ... ∈ B∗. We conclude
that B∗ is a σ-field. However, the Borel set B is the minimal σ-filed containing all intervals of
the type (−∞, x]. So B ⊂ B∗. Then for any Borel set B, X−1(B) is measurable in A. †

One special example of a measurable function is a simple function defined as
∑n

i=1 xiIAi(ω),
where Ai, i = 1, ..., n are disjoint measurable sets in A. Here, IA(ω) is the indicator function
of A such that IA(ω) = 1 if ω ∈ A and 0 otherwise. Note that the summation and maximum
of a finite number of simple functions are still simple functions. More examples of measurable
functions can be constructed from elementary algebra.

Proposition 2.5 Suppose that {Xn} are measurable. Then so are X1 + X2, X1X2, X
2
1 and

supnXn, infnXn, lim supnXn and lim infnXn. †

Proof All can be verified using the following relationship:

{X1 +X2 ≤ x} = Ω− {X1 +X2 > x} = Ω− ∪r∈Q {X1 > r} ∩ {X2 > x− r} ,

where Q is the set of all rational numbers. {X2
1 ≤ x} is empty if x < 0 and is equal to

{X1 ≤
√
x} − {X1 < −

√
x}. X1X2 = {(X1 +X2)2 −X2

1 −X2
2} /2 so it is measurable. The

remaining proofs can be seen from the following:
{

sup
n
Xn ≤ x

}
= ∩n {Xn ≤ x} .
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{
inf
n
Xn ≤ x

}
=

{
sup
n

(−Xn) ≥ −x
}
.

{
lim sup

n
Xn ≤ x

}
= ∩r∈Q,r>0 ∪∞n=1 ∩k≥n {Xk < x+ r} .

lim inf
n
Xn = − lim sup

n
(−Xn).

†

One important and fundamental fact for measurable function is given in the following propo-
sition.

Proposition 2.6 For any measurable function X ≥ 0, there exists an increasing sequence of
simple functions {Xn} such that Xn(ω) increases to X(ω) as n goes to infinity. †

Proof Define

Xn(ω) =

n2n−1∑

k=0

k

2n
I{ k

2n
≤ X(ω) <

k + 1

2n
}+ nI {X(ω) ≥ n} .

That is, we simply partition the range of X and assign the smallest value within each partition.
Clearly, Xn is increasing over n. Moreover, if X(ω) < n, then |Xn(ω) − X(ω)| < 1

2n
. Thus,

Xn(ω) converges to X(ω). †

This fact can be used to verify the measurability of many functions, for example, if g is a
continuous function from R to R, then g(X) is also measurable.

2.3.2 Integration of measurable function

Now we are ready to define the integration of a measurable function.

Definition 2.4 (i) For any simple function X(ω) =
∑n

i=1 xiIAi(ω), we define
∑n

i=1 xiµ(Ai) as
the integral of X with respect to measure µ, denoted as

∫
Xdµ.

(ii) For any X ≥ 0, we define
∫
Xdµ as

∫
Xdµ = sup

Y is simple function, 0 ≤ Y ≤ X

∫
Y dµ.

(iii) For general X, let X+ = max(X, 0) and X− = max(−X, 0). Then X = X+ −X−. If one
of
∫
X+dµ,

∫
X−dµ is finite, we define

∫
Xdµ =

∫
X+dµ−

∫
X−dµ. †

Particularly, we call X is integrable if
∫
|X|dµ =

∫
X+dµ +

∫
X−dµ is finite. Note the

definition (ii) is consistent with (i) when X itself is a simple function. When the measure space
is a probability measure space and X is a random variable,

∫
Xdµ is also called the expectation

of X, denoted by E[X].
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Proposition 2.7 (i) For two measurable functions X1 ≥ 0 and X2 ≥ 0, if X1 ≤ X2, then∫
X1dµ ≤

∫
X2dµ.

(ii) For X ≥ 0 and any sequence of simple functions Yn increasing to X,
∫
Yndµ→

∫
Xdµ. †

Proof (i) For any simple function 0 ≤ Y ≤ X1, Y ≤ X2. Thus,
∫
Y dµ ≤

∫
X2dµ by the

definition of
∫
X2dµ. We take the supreme over all the simple functions less than X1 and

obtain
∫
X1dµ ≤

∫
X2dµ.

(ii) From (i),
∫
Yndµ is increasing and bounded by

∫
Xdµ. It suffices to show that for any simple

function Z =
∑m

i=1 xiIAi(ω), where {Ai, 1 ≤ i ≤ m} are disjoint measurable sets and xi > 0,
such that 0 ≤ Z ≤ X, it holds

lim
n

∫
Yndµ ≥

m∑

i=1

xiµ(Ai).

We consider two cases. First, suppose
∫
Zdµ =

∑m
i=1 xiµ(Ai) is finite thus both xi and µ(Ai)

are finite. Fix an ε > 0, let Ain = Ai ∩ {ω : Yn(ω) > xi − ε} . Since Yn increases to X who
is larger than or equal to xi in Ai, Ain increases to Ai. Thus µ(Ain) increases to µ(Ai) by
Proposition 2.2. It yields that when n is large,

∫
Yndµ ≥

m∑

i=1

(xi − ε)µ(Ai).

We conclude limn

∫
Yndµ ≥

∫
Zdµ − ε

∑m
i=1 µ(Ai). Then limn

∫
Yndµ ≥

∫
Zdµ by letting ε

approach 0. Second, suppose
∫
Zdµ = ∞ then there exists some i from {1, ..., m}, say 1, so

that µ(A1) = ∞ or x1 = ∞. Choose any 0 < x < x1 and 0 < y < µ(A1). Then the set
A1n = A1 ∩ {ω : Yn(ω) > x} increases to A1. Thus when n large enough, µ(A1n) > y. We thus
obtain limn

∫
Yndµ ≥ xy. By letting x → x1 and y → µ(A1), we conclude limn

∫
Yndµ = ∞.

Therefore, in either case, limn

∫
Yndµ ≥

∫
Zdµ. †

Proposition 2.7 implies that, to calculate the integral of a non-negative measurable function
X, we can choose any increasing sequence of simple functions {Yn} and the limit of

∫
Yndµ is

the same as
∫
Xdµ. Particularly, such a sequence can chosen as constructed as Proposition 2.6;

then ∫
Xdµ = lim

n

{
n2n−1∑

k=1

k

2n
µ(

k

2n
≤ X <

k + 1

2n
) + nµ(X ≥ n)

}
.

Proposition 2.8 (Elementary Properties) Suppose
∫
Xdµ,

∫
Y dµ and

∫
Xdµ+

∫
Y dµ exit.

Then
(i) ∫

(X + Y )dµ =

∫
Xdµ+

∫
Y dµ,

∫
cXdµ = c

∫
Xdµ;

(ii) X ≥ 0 implies
∫
Xdµ ≥ 0; X ≥ Y implies

∫
Xdµ ≥

∫
Y dµ; and X = Y a.e., that is,

µ({ω : X(ω) 6= Y (ω)}) = 0, implies that
∫
Xdµ =

∫
Y dµ;

(iii) |X| ≤ Y with Y integrable implies that X is integrable; X and Y are integrable implies
that X + Y is integrable.†
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Proposition 2.8 can be proved using the definition. Finally, we give a few facts of computing
integration without proof.

(a) Suppose µ# is a counting measure in Ω = {x1, x2, ...}. Then for any measurable function
g, ∫

gdµ# =
∑

i

g(xi).

(b) For any continuous function g(x), which is also measurable in the Lebsgue measure space
(R,B, λ),

∫
gdλ is equal to the usual Riemann integral

∫
g(x)dx, whenever g is integrable.

(c) In a Lebsgue-stieljes measure space (Ω,B, λF ), where F is differentiable except discontin-
uous points {x1, x2, ...}, the integration of a continuous function g(x) is given by

∫
gdλF =

∑

i

g(xi) {F (xi)− F (xi−)}+

∫
g(x)f(x)dx,

where f(x) is the derivative of F (x).

2.3.3 Convergence of measurable functions

In this section, we provide some important theorems on how to take limits in the integration.

Theorem 2.2 (Monotone Convergence Theorem) If Xn ≥ 0 and Xn increases to X, then∫
Xndµ→

∫
Xdµ. †

Proof Choose non-negative simple function Xkm increasing to Xk as m → ∞. Define Yn =
maxk≤nXkn. {Yn} is an increasing series of simple functions and it satisfies

Xkn ≤ Yn ≤ Xn, so

∫
Xkndµ ≤

∫
Yndµ ≤

∫
Xndµ.

By letting n→∞, we obtain

Xk ≤ lim
n
Yn ≤ X,

∫
Xkdµ ≤

∫
lim
n
Yndµ = lim

n

∫
Yndµ ≤ lim

n

∫
Xndµ,

where the equality holds since Yn is simple function. By letting k →∞, we obtain

X ≤ lim
n
Yn ≤ X, lim

k

∫
Xkdµ ≤

∫
lim
n
Yndµ ≤ lim

n

∫
Xndµ.

The result holds. †

Example 2.7 This example shows that the non-negative condition in the above theorem is
necessary: let Xn(x) = −I(x > n)/n be measurable function in the Lebesgue measure space.
Clearly, Xn increases to zero but

∫
Xndλ = −∞.
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Theorem 2.3 (Fatou’s Lemma) If Xn ≥ 0 then

∫
lim inf

n
Xndµ ≤ lim inf

n

∫
Xndµ.

†

Proof Note
lim inf

n
Xn =

∞
sup
n=1

inf
m≥n

Xm.

Thus, the sequence {infm≥nXm} increases to lim infnXn. By the Monotone Convergence The-
orem, ∫

lim inf
n
Xndµ = lim

n

∫
inf
m≥n

Xmdµ ≤
∫
Xndµ.

Take the lim inf on both sides and the theorem holds. †

The next theorem requires two more definitions.

Definition 2.5 A sequence Xn converges almost everywhere (a.e.) to X, denoted Xn →a.e. X,
if Xn(ω) → X(ω) for all ω ∈ Ω − N where µ(N) = 0. If µ is a probability, we write a.e. as
a.s. (almost surely). A sequence Xn converges in measure to a measurable function X, denoted
Xn →µ X, if µ(|Xn − X| ≥ ε) → 0 for all ε > 0. If µ is a probability measure, we say Xn

converges in probability to X. †

The following proposition further justifies the convergence almost everywhere.

Proposition 2.9 Let {Xn}, X be finite measurable functions. Then Xn →a.e. X if and only if
for any ε > 0,

µ(∩∞n=1 ∪m≥n {|Xm −X| ≥ ε}) = 0.

If µ(Ω) <∞, then Xn →a.e. X if and only if for any ε > 0,

µ(∪m≥n {|Xm −X| ≥ ε})→ 0.

†

Proof Note that

{ω : Xn(Ω)→ X(ω)}c = ∪∞k=1 ∩∞n=1 ∪m≥n
{
ω : |Xm(ω)−X(ω)| ≥ 1

k

}
.

Thus, if Xn →a.e X, the measure of the left-hand side is zero. However, the right-hand side
contains ∩∞n=1 ∪m≥n {|Xm −X| ≥ ε} for any ε > 0. The direction ⇒ is proved. For the other
direction, we choose ε = 1/k for any k, then by countable sub-additivity,

µ(∪∞k=1 ∩∞n=1 ∪m≥n
{
ω : |Xm(ω)−X(ω)| ≥ 1

k

}
)
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≤
∑

k

µ(∩∞n=1 ∪m≥n
{
ω : |Xm(ω)−X(ω)| ≥ 1

k

}
) = 0.

Thus, Xn →a.e. X. When µ(Ω) = 1, the latter holds by Proposition 2.2. †

The following proposition describes the relationship between the convergence almost every-
where and the convergence in measure.

Proposition 2.10 Let Xn be finite a.e.
(i) If Xn →µ X, then there exists a subsequence Xnk →a.e X.
(ii) If µ(Ω) <∞ and Xn →a.e. X, then Xn →µ X. †

Proof (i) For any k, there exists some nk such that

P (|Xnk −X| ≥ 2−k) < 2−k.

Then
µ(∪m≥k {|Xnm −X| ≥ ε}) ≤ µ(∪m≥k

{
|Xnm −X| ≥ 2−k

}
) ≤

∑

m≥k
2−m → 0.

Thus from the previous proposition, Xnk →a.e X.
(ii) is direct from the second part of Proposition 2.9. †

Example 2.8 Let X2n+k = I(x ∈ [k/2n, (k + 1)/2n)), 0 ≤ k < 2n be measurable functions in
the Lebesgue measure space. Then it is easy to see Xn →λ 0 but does not converge to zero
almost everywhere. While, there exists a subsequence converging to zero almost everywhere.

Example 2.9 In Example 2.7, n2Xn →a.e. 0 but λ(|Xn| > ε) → ∞. This example shows that
µ(Ω) <∞ in (ii) of Proposition 2.10 is necessary.

We now state the third important theorem.

Theorem 2.4 (Dominated Convergence Theorem) If |Xn| ≤ Y a.e. with Y integrable,
and if Xn →µ X (or Xn →a.e. X), then

∫
|Xn −X|dµ→ 0 and lim

∫
Xndµ =

∫
Xdµ. †

Proof First, assume Xn →a.e X. Define Zn = 2Y − |Xn −X|. Clearly, Zn ≥ 0 and Zn → 2Y .
By the Fatou’s lemma, we have

∫
2Y dµ ≤ lim inf

n

∫
(2Y − |Xn −X|)dµ.

That is, lim supn
∫
|Xn − X|dµ ≤ 0 and the result holds. If Xn →µ X and the result does

not hold for some subsequence of Xn, by Proposition 2.10, there exits a further sub-sequence
converging to X almost surely. However, the result holds for this further subsequence. We
obtain the contradiction. †

The existence of the dominating function Y is necessary, as seen in the counter example in
Example 2.7. Finally, the following result describes the interchange between integral and limit
or derivative.
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Theorem 2.5 (Interchange of Integral and Limit or Derivatives) Suppose that X(ω, t)
is measurable for each t ∈ (a, b).
(i) If X(ω, t) is a.e. continuous in t at t0 and |X(ω, t)| ≤ Y (ω), a.e. for |t − t0| < δ with Y
integrable, then

lim
t→t0

∫
X(ω, t)dµ =

∫
X(ω, t0)dµ.

(ii) Suppose ∂
∂t
X(ω, t) exists for a.e. ω, all t ∈ (a, b) and | ∂

∂t
X(ω, t)| ≤ Y (ω), a.e. for all t ∈ (a, b)

with Y integrable. Then
∂

∂t

∫
X(ω, t)dµ =

∫
∂

∂t
X(ω, t)dµ.

†

Proof (i) follows from the Dominated Convergence Theorem and the subsequence argument.
(ii) can be seen from the following:

∂

∂t

∫
X(ω, t)dµ = lim

h→0

∫
X(ω, t+ h)−X(ω, t)

h
dµ.

Then from the conditions and (i), such a limit can be taken within the integration. †

2.4 Fubini Integration and Radon-Nikodym Derivative

2.4.1 Product of measures and Fubini-Tonelli theorem

Suppose that (Ω1,A1, µ1) and (Ω2,A2, µ2) are two measure spaces. Now we consider the product
set Ω1 × Ω2 = {(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2}. Correspondingly, we define a class

{A1 × A2 : A1 ∈ A1, A2 ∈ A2} .

A1×A2 is called a measurable rectangle set. However, the above class is not a σ-field. We thus
construct the σ-filed based on this class and denote

A1 ×A2 = σ({A1 × A2 : A1 ∈ A1, A2 ∈ A2}).

To define a measure on this σ-field, denoted µ1 × µ2, we can first define it on any rectangle set

(µ1 × µ2)(A1 × A2) = µ1(A1)µ2(A2).

Then µ1 × µ2 is extended to all sets in the A1 ×A2 by the Caratheodory Extension theorem.
One simple example is the Lebesgue measure in a multi-dimensional real space Rk. We let

(R,B, λ) be the Lebesgue measure in one-dimensional real space. Then we can use the above
procedure to define λ× ...× λ as a measure on Rk = R× ...×R. Clearly, for each cube in Rk,
this measure gives the same value as the volume of the cube. In fact, this measure agrees with
λk defined in Example 2.3.

With the product measure, we can start to discuss the integration with respect to this
measure. Let X(ω1, ω2) be the measurable function on the measurable space (Ω1 × Ω2,A1 ×
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A2, µ1 × µ2). The integration of X is denoted as
∫

Ω1×Ω2
X(ω1, ω2)d(µ1 × µ2). In the case when

the measurable space is real space, this integration is simply bivariate integration such like∫
R2 f(x, y)dxdy. As in the calculus, we are often concerned about whether we can integrate

over x first then y or we can integrate y first then x. The following theorem gives the condition
of changing the order of integration.

Theorem 2.6 (Fubini-Tonelli Theorem) Suppose that X : Ω1 × Ω2 → R is A1 × A2

measurable and X ≥ 0. Then
∫

Ω1

X(ω1, ω2)dµ1 is A2 measurable,

∫

Ω2

X(ω1, ω2)dµ2 is A1 measurable,

and
∫

Ω1×Ω2

X(ω1, ω2)d(µ1 × µ2) =

∫

Ω1

{∫

Ω2

X(ω1, ω2)dµ2

}
dµ1 =

∫

Ω2

{∫

Ω1

X(ω1, ω2)dµ1

}
dµ2.

†

As a corollary, suppose X is not necessarily non-negative but we can write X = X+ −X−.
Then the above results hold for X+ and X−. Thus, if

∫
Ω1×Ω2

|X(ω1, ω2)|d(µ1 × µ2) is finite,
then the above results hold.

Proof Suppose that we have shown the theorem holds for any indicator function IB(ω1, ω2),
where B ∈ A1 ×A2. We construct a sequence of simple functions, denoted as X̃n, increases to
X. Clearly,

∫
Ω1
X̃n(ω1, ω2)dµ1 is measurable and

∫

Ω1×Ω2

X̃n(ω1, ω2)d(µ1 × µ2) =

∫

Ω2

∫

Ω1

{
X̃n(ω1, ω2)dµ1

}
dµ2.

By the monotone convergence theorem,
∫

Ω1
X̃n(ω1, ω2)dµ1 increases to

∫
Ω1
X(ω1, ω2)dµ1 almost

everywhere. Further applying the monotone convergence theorem to both sides of the above
equality, we obtain

∫

Ω1×Ω2

X(ω1, ω2)d(µ1 × µ2) =

∫

Ω2

∫

Ω1

{X(ω1, ω2)dµ1} dµ2.

Similarly, ∫

Ω1×Ω2

X(ω1, ω2)d(µ1 × µ2) =

∫

Ω1

∫

Ω2

{X(ω1, ω2)dµ2} dµ1.

It remains to show IB(ω1, ω2) satisfies the theorem’s results for B ∈ A1 ×A2.
To this end, we define what is called a monotone class: M is a monotone class if for any

increasing sequence of sets B1 ⊆ B2 ⊆ B3 . . . in the class, ∪iBi belongs toM. We then letM0

be the minimal monotone class in A1×A2 containing all the rectangles. The existence of such
minimal class can be proved using the same construction as Proposition 2.3 and noting that
A1 ×A2 itself is a monotone class. We show that M0 = A1 ×A2.
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(a) M0 is a field: for A,B ∈ M0, it suffices to show that A ∩B,A ∩Bc, Ac ∩B ∈ M0. We
consider

MA = {B ∈ M0 : A ∩ B,A ∩ Bc, Ac ∩ B ∈ M0} .
It is straightforward to see that if A is a rectangle, then B ∈ MA for any rectangle B and that
MA is a monotone class. Thus,MA =M0 for A being a rectangle. For general A, the previous
result implies that all the rectangles are in MA. Clearly, MA is a monotone class. Therefore,
MA =M0 for any A ∈ M0. That is, for A,B ∈ M0, A ∩ B,A ∩Bc, Ac ∩B ∈ M0.

(b) M0 is a σ-field. For any B1, B2, ... ∈ M0, we can write ∪iBi as the union of increasing
sets B1, B1 ∪ B2, .... Since each set in the sequence is in M0 and M0 is a monotone class,
∪iBi ∈ M0. Thus, M0 is a σ-field so it must be equal to A1 ×A2.

Now we come back to show that for any B ∈ A1×A2, IB satisfies the equality in Theorem
2.6. To do this, we define a class

{B : B ∈ A1 ×A2 is measurable and IB satifies the equality in Theorem 2.6} .

Clearly, the class contains all the rectangles. Second, the class is a monotone class: suppose
B1, B2, ... is an increasing sequence of sets in the class, we apply the monotone convergence
theorem to

∫

Ω1×Ω2

IBid(µ1 × µ2) =

∫

Ω2

{∫

Ω1

IBidµ1

}
dµ2 =

∫

Ω1

{∫

Ω2

IBidµ2

}
dµ1

and note IBi → I∪iBi . We conclude that ∪iBi is also in the defined class. Therefore, from the
previous result about the relationship between the monotone class and the σ-field, we obtain
that the defined class should be the same as A1 ×A2. †

Example 2.10 Let (Ω, 2Ω, µ#) be a counting measure space where Ω = {1, 2, 3, ...} and (R,B, λ)
be the Lebesgue measure space. Define f(x, y) be a bivariate function in the product of these
two measure space as f(x, y) = I(0 ≤ x ≤ y) exp{−y}. To evaluate the integral f(x, y), we use
the Fubini-Tonelli theorem and obtain

∫

Ω×R
f(x, y)d{µ# × λ} =

∫

Ω

{
∫

R

f(x, y)dλ(y)}dµ#(x) =

∫

Ω

exp{−x}dµ#(x)

=
∞∑

n=1

exp{−n} = 1/(e− 1).

2.4.2 Absolute continuity and Radon-Nikodym derivative

Let (Ω,A, µ) be a measurable space and let X be a non-negative measurable function on Ω.
We define a set function ν as

ν(A) =

∫

A

Xdµ =

∫
IAXdµ

for each A ∈ A. It is easy to see that ν is also a measure on (Ω,A). X can be regarded as
the derivative of the measure ν with respect µ (one can think about an example in real space).
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However, one question is the opposite direction: if both µ and ν are the measures on (Ω,A),
can we find a measurable function X such that the above equation holds? To answer this, we
need to introduce the definition of absolute continuity.

Definition 2.6 If for any A ∈ A, µ(A) = 0 implies that ν(A) = 0, then ν is said to be
absolutely continuous with respect to µ, and we write ν ≺≺ µ. Sometimes it is also said that
ν is dominated by µ. †

One equivalent condition to the above the condition is the following lemma.

Proposition 2.11 Suppose ν(Ω) <∞. Then ν ≺≺ µ if and only if for any ε > 0, there exists
a δ such that ν(A) < ε whenever µ(A) < δ. †

Proof “ ⇐′′ is clear. To prove “ ⇒′′, we use the contradiction. Suppose there exists ε and a
set An such that ν(An) > ε and µ(An) < n−2. Since

∑
n µ(An) <∞, we have

µ(lim sup
n

An) ≤
∑

m≥n
µ(An)→ 0.

Thus µ(lim supnAn) = 0. However, ν(lim supnAn) = limn ν(∪m≥nAm) ≥ lim supn ν(An) ≥ ε. It
is a contradiction. †

The following Radon-Nikodym theorem says that if ν is dominated by µ, then a measurable
function X satisfying the equation exists. Such X is called the Radon-Nikodym derivative of ν
with respect µ, denoted by dν/dµ.

Theorem 2.7 (Radon-Nikodym theorem) Let (Ω,A, µ) be a σ-finite measure space, and
let ν be a measurable on (Ω,A) with ν ≺≺ µ. Then there exists a measurable function X ≥ 0
such that ν(A) =

∫
A
Xdµ for all A ∈ A. X is unique in the sense that if another measurable

function Y also satisfies the equation, then X = Y , a.e. †

Before proving Theorem 2.7, we need the following Hahn decomposition theorem for any
additive set function with real values, φ(A), which is defined on a measurable space (Ω,A) such
that for countable disjoint sets A1, A2, ...,

φ(∪nAn) =
∑

n

φ(An).

The main difference from the usual measure definition is that φ(A) can be negative and must
be finite.

Proposition 2.12 (Hahn Decomposition) For any additive set function φ, there exist dis-
joint sets A+ and A− such that A+ ∪A− = Ω, φ(E) ≥ 0 for any E ⊂ A+ and φ(E) ≤ 0 for any
E ⊂ A−. A+ is called positive set and A− is called negative set of φ. †

Proof Let α = sup{φ(A) : A ∈ A}. Suppose there exists a set A+ such that φ(A+) = α <∞.
Let A− = Ω−A+. If E ⊂ A+ and φ(E) < 0, then φ(A+−E) ≥ α−φ(E) > α, an impossibility.
Thus, φ(E) ≥ 0. Similarly, for any E ⊂ A−, φ(E) ≤ 0.
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It remains to construct such A+. Choose An such that φ(An)→ α. Let A = ∪nAn. For each
n, we consider all possible intersection of A1, ..., An, denoted by Bn = {Bni : 1 ≤ i ≤ 2n}. Then
the collection of Bn is a partition of A. Let Cn be the union of those Bni in Bn such that φ(Bni) >
0. Then φ(An) ≤ φ(Cn). Moreover, for any m < n, φ(Cm ∪ ... ∪ Cn) ≥ φ(Cm ∪ ... ∪ Cn−1). Let
A+ = ∩∞m=1 ∪n≥mCn. Then α = limm φ(Am) ≤ limm φ(∪n≥mCn) = φ(A+). Then φ(A+) = α. †

We now start to prove Theorem 2.7.

Proof We first show that this holds if µ(Ω) <∞. Let Ξ be the class of non-negative functions
g such that

∫
E
gdµ ≤ ν(E). Clearly, 0 ∈ Ξ. If g and g′ are in Ξ, then

∫

E

max(g, g′)dµ =

∫

E∩{g≥g′}
gdµ+

∫

E∩{g<g′}
g′dµ ≤

∫

E∩{g≥g′}
dν +

∫

E∩{g<g′}
dν = ν(E).

Thus, max(g, g′) ∈ Ξ. Moreover, if gn increases to g and gn ∈ Ξ, then by the monotone
convergence theorem, g ∈ Ξ.

Let α = supg∈Ξ

∫
gdµ then α ≤ ν(Ω). Choose gn in Ξ such that

∫
gndµ > α − n−1. Define

fn = max(g1, ..., gn) ∈ Ξ and fn increases to f ∈ Ξ. We have
∫
fdµ = α.

Define a measure 0 ≤ νs(E) = ν(E)−
∫
E
fdµ. We will show that there exists set Sµ and Sν

such that µ(Ω− Sµ) = 0, νs(Ω− Sν) = 0, and Sµ ∩ Sν = ∅. If this is true, then since ν ≺≺ µ,
νs(Ω− Sµ) ≤ ν(Ω− Sµ) = 0. Thus,

νs(E) ≤ νs(E ∩ (Ω− Sµ)) + νs(E ∩ (Ω− Sν)) = 0.

This gives that ν(E) =
∫
E
fdµ. We prove the previous statement by contradiction. Let A+

n ∪A−n
be a Hahn decomposition for the the set function νs−n−1µ and let M = ∪nA+

n so M c = ∩nA−n .
Since νs(M

c) − n−1µ(M c) ≤ νs(A
−
n ) − n−1µ(A−n ) ≤ 0, we have νs(M

c) ≤ n−1µ(M c) → 0.
Then µ(M) must be positive. Therefore, there exists some A = A+

n such that µ(A) > 0 and
νs(E) ≥ n−1µ(E) for any E ⊂ A. For such A, we have that for ε = 1/n,

∫

E

(f + εIA)dµ =

∫

E

fdµ+ εµ(E ∩ A)

≤
∫

E

fdµ+ νs(E ∩ A)

≤
∫

E∩A
fdµ+ νs(E ∩ A) +

∫

E−A
fdµ

≤ ν(E ∩ A) +

∫

E−A
fdµ ≤ ν(E ∩ A) + ν(E − A) = ν(E).

In other words, f + εIA is in Ξ. However,
∫

(f + εIA)dµ = α + εµ(A) > α. We obtain the
contradiction.

We have proved the theorem for µ(Ω) < ∞. If µ is countably finite, there exists countable
decomposition of Ω into {Bn} such that µ(Bn) <∞. For the measures µn(A) = µ(A∩Bn) and
νn(A) = ν(A ∩ Bn), νn ≺≺ µn so we can find non-negative fn such that

ν(A ∩Bn) =

∫

A∩Bn
fndµ.
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Then ν(A) =
∑

n ν(A ∩Bn) =
∫
A

∑
n fnIBndµ.

The function f satisfying the result must be unique almost everywhere. If two f1 ad f2

satisfy that
∫
A
f1dµ =

∫
A
f2dµ then after choosing A = {f1 − f2 > 0} and A = {f1 − f2 < 0},

we obtain f1 = f2 almost everywhere. †

Using the Radon-Nikodym derivative, we can transform the integration with respect to the
measure µ to the integration with respect to the measure ν.

Proposition 2.13 Suppose ν and µ are σ-finite measure defined on a measure space (Ω,A)
with ν ≺≺ µ, and suppose Z is a measurable function such that

∫
Zdν is well defined. Then

for any A ∈ A, ∫

A

Zdν =

∫

A

Z
dν

dµ
dµ.

†

Proof (i) If Z = IB where B ∈ A, then

∫

A

Zdν = ν(A ∩B) =

∫

A∩B

dν

dµ
dµ =

∫

A

IB
dν

dµ
dµ.

The result holds.
(ii) If Z ≥ 0, we can find a sequence of simple function Zn increasing to Z. Clearly, for Zn,

∫

A

Zndν =

∫

A

Zn
dν

dµ
dµ.

Take limits on both sides and apply the monotone convergence theorem. We obtain the result.
(iii) For any Z, we write Z = Z+ − Z−. Then both Z+ and Z− are integrable. Thus,

∫
Zdν =

∫
Z+dν −

∫
Z−dν =

∫
Z+ dν

dµ
dµ−

∫
Z−

dν

dµ
dµ =

∫
Z
dν

dµ
dµ.

†

2.4.3 X-induced measure

Let X be a measurable function defined on (Ω,A, µ). Then for any B ∈ B, since X−1(B) ∈ A,
we can define a set function on all the Borel sets as

µX(B) = µ(X−1(B)).

Such µX is called a measure induced by X. Hence, we obtain a measure in the Borel σ-field
(R,B, µX).

Suppose that (R,B, ν) is another measure space (often the counting measure or the Lebesgue
measure) and µX is dominated by ν with the derivative f . Then f is called the density of X
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with respect to the dominating measure ν. Furthermore, we obtain that for any measurable
function g from R to R,

∫

Ω

g(X(ω))dµ(ω) =

∫

R

g(x)dµX(x) =

∫

R

g(x)f(x)dν(x).

That is, the integration of g(X) on the original measure space Ω can be transformed as the
integration of g(x) on R with respect to the induced-measure µX and can be further transformed
as the integration of g(x)f(x) with respect to the dominating measure ν.

When (Ω,A, µ) = (Ω,A, P ) is a probability space, the above interpretation has a special
meaning: X is now a random variable then the above equation becomes

E[g(X)] =

∫

R

g(x)f(x)dν(x).

We immediately recognize that f(x) is the density function of X with respect to the dominat-
ing measure ν. Particularly, if ν is the counting measure, f(x) is in fact the probability mass
function; if ν is the Lebesgue measure, f(x) is the probability density function in the usual
sense. This fact has an important implication: any expectations regarding random variable
X can be computed via its probability mass function or density function without referral to
whatever probability measure space X is defined on. This is the reason why in most of statis-
tical framework, we seldom mention the underlying measure space while only give either the
probability mass function or the probability density function.

2.5 Probability Measure

2.5.1 Parallel definitions

Already discussed before, a probability measure space (Ω,A, P ) satisfies that P (Ω) = 1 and
random variable (or random vector in multi-dimensional real space) X is a measurable function
on this space. The integration of X is equivalent to the expectation. The density or the mass
function of X is the Radon-Nikydom derivative of the X-induced measure with respect to the
Lebesgue measure or the counting measure in real space. By using the mass function or density
function, statisticians unconsciously ignore the underlying probability measure space (Ω,A, P ).
However, it is important for readers to keep in mind that whenever a density function or mass
function is referred, we assume that above procedure has been worked out for some probability
space.

Recall that F (x) = P (X ≤ x) is the cumulative distribution function of X. Clearly, F (x) is
a nondecreasing function with F (−∞) = 0 and F (∞) = 1. Moreover, F (x) is right-continuous,
meaning that F (xn) → F (x), if xn decreases to x. Interestingly, we can show that µF , the
Lebesgue-Stieljes measure generated by F , is exactly the same measure as the one induced by
X, i.e., PX .

Since a probability measure space is a special case of general measure space, all the properties
for the general measure space including the monotone convergence theorem, the Fatou’s lemma,
the dominating convergence theorem, and the Fubini-Tonelli theorem apply.
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2.5.2 Conditional expectation and independence

Nevertheless, there are some features only specific to probability measure, which distinguish
probability theory from general measure theory. Two of these important features are conditional
probability and independence. We describe them in the following text.

In a probability measure space (Ω,A, P ), we know the conditional probability of an event
A given another event B is defined as P (A|B) = P (A ∩ B)/P (B) and P (A|Bc) = P (A ∩
Bc)/P (Bc). This means: if B occurs, then the probability that A occurs is P (A|B); if B does
not occur, then the probability that A occurs if P (A|Bc). Thus, such a conditional distribution
can be thought as a measurable function assigned to the σ-field {∅, B, Bc,Ω}, which is equal

P (A|B)IB(ω) + P (A|Bc)IBc(ω).

Such a simple example in fact characterizes the essential definition of conditional probability.
Let ℵ be the sub-σ-filed of A. For any A ∈ A, the conditional probability of A given ℵ is a
measurable function on (Ω,ℵ), denoted P (A|ℵ), and satisfies that
(i) P (A|ℵ) is measurable in ℵ and integrable;
(ii) For any G ∈ ℵ, ∫

G

P (A|ℵ)dP = P (A ∩G).

Theorem 2.8 (Existence and Uniqueness of Conditional Probability Function) The
measurable function P (A|ℵ) exists and is unique in the sense that any two functions satisfying
(i) and (ii) are the same almost surely. †

Proof In the probability space (Ω,ℵ, P ), we define a set function ν on ℵ such that ν(G) =
P (A∩G) for any G ∈ ℵ. It can easily show ν is a measure and P (G) = 0 implies that ν(G) = 0.
Thus ν ≺≺ P . By the Radon-Nikodym theorem, there exits a ℵ-measurable function X such
that

ν(G) =

∫

G

XdP.

Thus X satisfies the properties (i) and (ii). Suppose X and Y both are measurable in ℵ and∫
G
XdP =

∫
G
Y dP for any G ∈ ℵ. That is,

∫
G

(X − Y )dP = 0. Particularly, we choose
G = {X−Y ≥ 0} and G = {X−Y < 0}. We then obtain

∫
|X−Y |dP = 0. So X = Y , a.s. †

Some properties of the conditional probability P (·|ℵ) are the following.

Theorem 2.9 P (∅|ℵ) = 0, P (Ω|ℵ) = 1 a.e. and

0 ≤ P (A|ℵ) ≤ 1

for each A ∈ A. if A1, A2, ... is finite or countable sequence of disjoint sets in A, then

P (∪nAn|ℵ) =
∑

n

P (An|ℵ).

†
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The properties can be verified directly from the definition. Now we define the conditional
expectation of a integrable random variable X given ℵ, denoted E[X|ℵ], as
(i) E[X|ℵ] is measurable in ℵ and integrable;
(ii) For any G ∈ ℵ, ∫

G

E[X|ℵ]dP =

∫

G

XdP,

equivalently; E [E[X|ℵ]IG] = E[XIG], a.e.
The existence and the uniqueness of E[X|ℵ] can be shown similar to Theorem 2.8. The

following properties are fundamental.

Theorem 2.10 Suppose X, Y,Xn are integrable.
(i) If X = a a.s., then E[X|ℵ] = a.
(ii) For constants a and b, E[aX + bY |ℵ] = aE[X|ℵ] + b[Y |ℵ].
(iii) If X ≤ Y a.s., then E[X|ℵ] ≤ E[Y |ℵ].
(iv) |E[X|ℵ]| ≤ E[|X||ℵ].
(v) If limnXn = X a.s., |Xn| ≤ Y and Y is integrable, then limnE[Xn|ℵ] = E[X|ℵ].
(vi) If X is measurable in ℵ, then

E[XY |ℵ] = XE[Y |ℵ].

(vii) For two sub-σ fields ℵ1 and ℵ2 such that ℵ1 ⊂ ℵ2,

E [E[X|ℵ2]|ℵ1] = E[X|ℵ1].

(viii) P (A|ℵ) = E[IA|ℵ]. †

Proof (i)-(iv) be shown directly using the definition. To prove (v), we consider Zn = supm≥n |Xm−
X|. Then Zn decreases to 0. From (iii), we have

|E[Xn|ℵ]− E[X|ℵ]| ≤ E[Zn|ℵ].

On the other hand, E[Zn|ℵ] decreases to a limit Z ≥ 0. The result holds if we can show Z = 0
a.s. Note E[Zn|ℵ] ≤ E[2Y |ℵ], by the dominated convergence theorem,

E[Z] =

∫
E[Z|ℵ]dP ≤

∫
E[Zn|ℵ]dP → 0.

Thus Z = 0 a.s.
To see (vi) holds, we first show it holds for a simple function X =

∑
i xiIBi where Bi are

disjoint set in ℵ. For any G ∈ ℵ,
∫

G

E[XY |ℵ]dP =

∫

G

XY dP =
∑

i

xi

∫

G∩Bi
Y dP =

∑

i

xi

∫

G∩Bi
E[Y |ℵ]dP =

∫

G

XE[Y |ℵ]d.

Hence, E[XY |ℵ] = XE[Y |ℵ]. For any X, using the previous construction, we can find a
sequence of simple functions Xn converging to X and |Xn| ≤ |X|. Then we have

∫

G

XnY dP =

∫

G

XnE[Y |ℵ]dP.
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Note that |XnE[Y |ℵ]| = |E[XnY |ℵ]| ≤ E[|XY ||ℵ]. Taking limits on both sides and from the
dominated convergence theorem, we obtain

∫

G

XY dP =

∫

G

XE[Y |ℵ]dP.

Then E[XY |ℵ] = XE[Y |ℵ].
For (vii), for any G ∈ ℵ1 ⊂ ℵ2, it is clear form that

∫

G

E[X|ℵ2]dP =

∫

G

XdP =

∫

G

E[X|ℵ1]dP.

(viii) is clear from the definition of the conditional probability. †

How can we relate the above conditional probability and conditional expectation given a
sub-σ field to the conditional distribution or density of X given Y ? In R2, suppose (X, Y )
has joint density function f(x, y) then it is known that the conditional density of X given
Y = y is equal to f(x, y)/

∫
x
f(x, y)dx and the conditional expectation of X given Y = y is

equal to
∫
x
xf(x, y)dx/

∫
x
f(x, y)dx. To recover these formulae using the current definition, we

define ℵ = σ(Y ), the σ-field generated by the class {{Y ≤ y} : y ∈ R}. Then we can define the
conditional probability P (X ∈ B|ℵ) for any B in (R,B). Since P (X ∈ B|ℵ) is measurable in
σ(Y ), P (X ∈ B|ℵ) = g(B, Y ) where g(B, ·) is a measurable function. For any {Y ≤ y} ∈ ℵ,

∫

Y≤y0

P (X ∈ B|ℵ)dP =

∫
I(y ≤ y0)g(B, y)fY (y)dy = P (X ∈ B, Y ≤ y0)

=

∫
I(y ≤ y0)

∫

B

f(x, y)dxdy.

Differentiate with respect to y0, we have g(B, y)fY (y) =
∫
B
f(x, y)dx. Thus,

P (X ∈ B|ℵ) =

∫

B

f(x|y)dx.

Thus, we note that the conditional density of X|Y = y is in fact the density function of the
conditional probability P (X ∈ ·|ℵ) with respect to the Lebesgue measure.

On the other hand, E[X|ℵ] = g(Y ) for some measurable function g(·). Note that

∫
I(Y ≤ y0)E[X|ℵ]dP =

∫
I(y ≤ y0)g(y)fY (y)dy = E[XI(Y ≤ y0)] =

∫
I(y ≤ y0)xf(x, y)dxdy.

We obtain g(y) =
∫
xf(x, y)dx/

∫
f(x, y)dx. Then E[X|ℵ] is the same as the conditional ex-

pectation of X given Y = y.
Finally, we give the definition of independence: Two measurable sets or events A1 and A2

in A are independent if P (A ∩ B) = P (A)P (B). For two random variables X and Y , X and
Y are said to independent if for any Borel sets B1 and B2, P (X ∈ B1, Y ∈ B2) = P (X ∈
B1)P (Y ∈ B2). In terms of conditional expectation, X is independent of Y implies that for
any measurable function g, E[g(X)|Y ] = E[g(X)].
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READING MATERIALS : You should read Lehmann and Casella, Sections 1.2 and 1.3. You
may read Lehmann Testing Statistical Hypotheses, Chapter 2.

PROBLEMS

1. Let O be the class of all open sets in R. Show that the Borel σ-field B is also a σ-field
generated by O, i.e., B = σ(O).

2. Suppose (Ω,A, µ) is a measure space. For any set C ∈ A, we defineA∩C as {A ∩ C : A ∈ A}.
Show that (Ω ∩ C,A∩ C, µ) is a measure space (it is called the measure space restricted
to C).

3. Suppose (Ω,A, µ) is a measure space. We define a new class

Ã = {A ∪N : A ∈ A and N is contained in a set B ∈ A with µ(B) = 0} .

Furthermore, we define a set function µ̃ on Ã: for any A ∪ N ∈ Ã, µ̃(A ∪ N) = µ(A).
Show (Ω, Ã, µ̃) is a measure space (it is called the completion of (Ω,A, µ)).

4. Suppose (R,B, P ) is a probability measure space. Let F (x) = P ((−∞, x]). Show

(a) F (x) is an increasing and right-continuous function with F (−∞) = 0 and F (∞) = 1.
F is called a distribution function.

(b) if denote µF as the Lebesgue-Stieljes measure generated from F , then P (B) = µF (B)
for any B ∈ B. Hint: use the uniqueness of measure extension in the Caratheodory
extension theorem.

Remark: In other words, any probability measure in the Borel σ-field can be considered
as a Lebesgue-Stieljes measure generated from some distribution function. Obviously,
a Lebesgue-Stieljes measure generated from some distribution function is a probability
measure. This gives a one-to-one correspondence between probability measures and dis-
tribution functions.

5. Let (R,B, µF ) be a measure space, where B is the Borel σ-filed and µF is the Lebesgue-
Stieljes measure generated from F (x) = (1− e−x)I(x ≥ 0).

(a) Show that for any interval (a, b], µF ((a, b]) =
∫

(a,b]
e−xI(x ≥ 0)dµ(x), where µ is the

Lebesgue measure in R.

(b) Use the uniqueness of measure extension in the Carotheodory extension theorem to
show µF (B) =

∫
B
e−xI(x ≥ 0)dµ(x) for any B ∈ B.

(c) Show that for any measurable function X in (R,B) with X ≥ 0,
∫
X(x)dµF (x) =∫

X(x)e−xI(x ≥ 0)dµ(x). Hint: use a sequence of simple functions to approximate
X.

(d) Using the above result and the fact that for any Riemann integrable function, its
Riemann integral is the same as its Lebesgue integral, calculate the integration

∫
(1+

e−x)−1dµF (x).
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6. If X ≥ 0 is a measurable function on a measure space (Ω,A, µ) and
∫
Xdµ = 0, then

µ({ω : X(ω) > 0}) = 0.

7. Suppose X is a measurable function and
∫
|X|dµ < ∞. Show that for each ε > 0, there

exists a δ > 0 such that
∫
A
|X|dµ < ε whenever µ(A) < δ.

8. Let µ be the Borel measure in R and ν be the counting measure in the space Ω =
{1, 2, 3, ...} such that ν({n}) = 2−n for n = 1, 2, 3, .... Define a function f(x, y) : R×Ω 7→
R as f(x, y) = I(y−1 ≤ x < y)x. Show f(x, y) is a measurable function with respect to the
product measure space (R×Ω, σ(B× 2Ω), µ× ν) and calculate

∫
R×Ω

f(x, y)d(µ× ν)(x, y).

9. F and G are two continuous generalized distribution functions. Use the Fubini-Tonelli
theorem to show that for any a ≤ b,

F (b)G(b)− F (a)G(a) =

∫

[a,b]

FdG+

∫

[a,b]

GdF (integration by parts).

Hint: consider the equality
∫

[a,b]×[a,b]

d(µF × µG) =

∫

[a,b]×[a,b]

I(x ≥ y)d(µF × µG) +

∫

[a,b]×[a,b]

I(x < y)d(µF × µG),

where µF and µG are the measures generated by F and G respectively.

10. Let µ be the Borel measure in R. We list all rational numbers in R as r1, r2, .... Define ν
as another measure such that for any B ∈ B, ν(B) = µ(B∩ [0, 1])+

∑
ri∈B 2−i. Show that

neither ν ≺≺ µ nor µ ≺≺ ν is true; however, ν ≺≺ µ+ ν. Calculate the Radon-Nikodym
derivative dν/d(µ+ ν).

11. X is a random variable in a probability measure space (Ω,A, P ). Let PX be the probability
measure induced by X. Show that for any measurable function g : R→ R such that g(X)
is integrable, ∫

Ω

g(X(ω))dP (ω) =

∫

R

g(x)dPX(x).

Hint: first prove it for a simple function g.

12. X1, ..., Xn are i.i.d with Uniform(0,1). Let X(n) be max{X1, ..., Xn}. Calculate the con-
ditional expectation E[X1|σ(X(n))], or equivalently, E[X1|X(n)].

13. X and Y are two random variables with density functions f(x) and g(y) in R. Define
A = {x : f(x) > 0} and B = {y : g(y) > 0}. Show PX , the measure induced by X, is
dominated by PY , the measured induced by Y , if and only if λ(A ∩ Bc) = 0 (that is,
A is almost contained in B). Here, λ is the Lebesgue measure in R. Use this result to
show that the measure induced by Uniform(0, 1) random variable is dominated by the
measure induced by N(0, 1) random variable but the opposite is not true.

14. Continue Question 9, Chapter 1. The distribution functions FU and FL are called the
Fréchet bounds. Show that FL and FU are singular with respect to Lebesgue measure λ2

in [0, 1]2; i.e., show that the corresponding probability measure PL and PU satisfy

P ((X, Y ) ∈ A) = 1, λ2(A) = 0
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and
P ((X, Y ) ∈ Ac) = 0, λ2(Ac) = 1

for some set A (which will be different for PL and PU). This implies that FL and FU do
not have densities with respect to Lebesgue measure on [0, 1]2.

15. Lehmann and Casella, page 63, problem 2.6

16. Lehmann and Casella, page 64, problem 2.11

17. Lehmann and Casella, page 64, problem 3.1

18. Lehmann and Casella, page 64, problem 3.3

19. Lehmann and Casella, page 64, problem 3.7



CHAPTER 3 LARGE SAMPLE
THEORY

In many probabilistic and statistical problems, we are faced with a sequence of random variables
(vectors), say {Xn}, and wish to understand the limit properties of Xn. As one example, let Xn

be the number of heads appearing in n independent tossing coins. Interesting questions can be:
what is the limit of the proportion of observing heads, Xn/n, when n is large? How accurate
is Xn/n to estimate the probability of observing head in a flipping? Such theory studying the
limit properties of a sequence of random variables (vectors) {Xn} is called large sample theory.
In this chapter, we always assume the existence of a probability measure space (Ω,A, P ) and
suppose X,Xn, n ≥ 1 are random variables (vectors) defined in this probability space.

3.1 Modes of Convergence in Real Space

3.1.1 Definition

Definition 3.1 Xn is said to converge almost surely to X, denoted by Xn →a.s. X, if there
exists a set A ⊂ Ω such that P (Ac) = 0 and for each ω ∈ A, Xn(ω)→ X(ω). †

Remark 3.1. Note that

{ω : Xn(ω)→ X(ω)}c = ∪ε>0 ∩n {ω : sup
m≥n
|Xm(ω)−X(ω)| > ε}.

Then the above definition is equivalent to

P (sup
m≥n
|Xm −X| > ε)→ 0 as n→∞.

Such an equivalence is also implied in Proposition 2.9.

Definition 3.2 Xn is said to converge in probability to X, denoted by Xn →p X, if for every
ε > 0,

P (|Xn −X| > ε)→ 0.

†

Definition 3.3 Xn is said to converge in rth mean to X, denote by Xn →r X, if

E[|Xn −X|r]→ 0 as n→∞ for functions Xn, X ∈ Lr(P ),

42
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where X ∈ Lr(P ) means E[|X|r] =
∫
|X|rdP <∞. †

Definition 3.4 Xn is said to converge in distribution of X, denoted by Xn →d X or Fn →d F
(or L(Xn)→ L(X) with L referring to the “law” or “distribution”), if the distribution functions
Fn and F of Xn and X satisfy

Fn(x)→ F (x) as n→∞ for each continuity point x of F .

†

Definition 3.5 A sequence of random variables {Xn} is uniformly integrable if

lim
λ→∞

lim sup
n→∞

E [|Xn|I(|Xn| ≥ λ)] = 0.

†

3.1.2 Relationship among modes

The following theorem describes the relationship among all the convergence modes.

Theorem 3.1 (A) If Xn →a.s. X, then Xn →p X.
(B) If Xn →p X, then Xnk →a.s. X for some subsequence Xnk .
(C) If Xn →r X, then Xn →p X.
(D) If Xn →p X and |Xn|r is uniformly integrable, then Xn →r X.
(E) If Xn →p X and lim supnE|Xn|r ≤ E|X|r, then Xn →r X.
(F) If Xn →r X, then Xn →r′ X for any 0 < r′ ≤ r.
(G) If Xn →p X, then Xn →d X.
(H) Xn →p X if and only if for every subsequence {Xnk} there exists a further subsequence
{Xnk,l} such that Xnk,l →a.s. X.
(I) If Xn →d c for a constant c, then Xn →p c. †

Remark 3.2 The results of Theorem 3.1 appear to be complicated; however, they can be well
described in Figure 1 below.

Figure 1: Relationship among Modes of Convergence
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Proof (A) For any ε > 0,

P (|Xn −X| > ε) ≤ P (sup
m≥n
|Xm −X| > ε)→ 0.

(B) Since for any ε > 0, P (|Xn−X| > ε)→ 0, we choose ε = 2−m then there exists a Xnm such
that

P (|Xnm −X| > 2−m) < 2−m.

Particularly, we can choose nm to be increasing. For the sequence {Xnm}, we note that for any
ε > 0, when nm is large,

P (sup
k≥m
|Xnk −X| > ε) ≤

∑

k≥m
P (|Xnk −X| > 2−k) ≤

∑

k≥m
2−k → 0.

Thus, Xnm →a.s. X.
(C) We use the Markov inequality: for any positive and increasing function g(·) and random
variable Y ,

P (|Y | > ε) ≤ E[
g(|Y |)
g(ε)

].

In particular, we choose Y = |Xn −X| and g(y) = |y|r. It gives that

P (|Xn −X| > ε) ≤ E[
|Xn −X|r

εr
]→ 0.

(D) It is sufficient to show that for any subsequence of {Xn}, there exists a further subsequence
{Xnk} such that E|Xnk − X|r → 0. For any subsequence of {Xn}, from (B), there exists a
further subsequence {Xnk} such that Xnk →a.s. X. We will show the result holds for {Xnk}.
For any ε, there exists λ such that

lim sup
nk

E[|Xnk |rI(|Xnk|r ≥ λ)] < ε.

Particularly, we choose λ (only depending on ε) such that P (|X|r = λ) = 0. Then, it is clear
that |Xnk |rI(|Xnk|r ≥ λ)→a.s. |X|rI(|X|r ≥ λ). By the Fatou’s Lemma,

E[|X|rI(|X|r ≥ λ)] =

∫
lim
n
|Xnk|rI(|Xnk |r ≥ λ)dP ≤ lim inf

nk
E[|Xnk|rI(|Xnk |r ≥ λ)] < ε.

Therefore,

E[|Xnk −X|r]
≤ E[|Xnk −X|rI(|Xnk |r < 2λ, |X|r < 2λ)] + E[|Xnk −X|rI(|Xnk |r ≥ 2λ or |X|r ≥ 2λ)]

≤ E[|Xnk −X|rI(|Xnk |r < 2λ, |X|r < 2λ)]

+2rE[(|Xnk |r + |X|r)I(|Xnk|r ≥ 2λ or |X|r ≥ 2λ)],

where the last inequality follows from the inequality (x+y)r ≤ 2r(max(x, y))r ≤ 2r(xr+yr), x ≥
0, y ≥ 0. Note that the first term converges to zero from the dominated convergence theorem.
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Furthermore, when nk is large, I(|Xnk | ≥ 2λ) ≤ I(|X| ≥ λ) and I(|X| ≥ 2λ) ≤ I(|Xnk| ≥ λ)
almost surely. Then the second term is bounded by

2 ∗ 2r {E[|Xnk |rI(|Xnk | ≥ λ)] + E[|X|rI(|X| ≥ λ)]} ,
which is smaller than 2r+1ε. Thus,

lim sup
n

E[|Xnk −X|r] ≤ 2r+1ε.

Let ε tend to zero and the result holds.
(E) It is sufficient to show that for any subsequence of {Xn}, there exists a further subsequence
{Xnk} such that E[|Xnk − X|r] → 0. For any subsequence of {Xn}, from (B), there exists a
further subsequence {Xnk} such that Xnk →a.s. X. Define

Ynk = 2r(|Xnk |r + |X|r)− |Xnk −X|r ≥ 0.

We apply the Fatou’s Lemma to Yn and obtain that
∫

lim inf
nk

YnkdP ≤ lim inf
nk

∫
YnkdP.

It is equivalent to

2r+1E[|X|r] ≤ lim inf
nk
{2rE[|Xnk|r] + 2rE[|X|r]− E[|Xnk −X|r]} .

Thus,

lim sup
nk

E[|Xnk −X|r] ≤ 2r
{

lim inf
nk

E[|Xnk |r]− E[|X|r]
}
≤ 0.

The result holds.
(F) We need to use the Hölder inequality as follows

∫
|f(x)g(x)|dµ ≤

{∫
|f(x)|pdµ(x)

}1/p{∫
|g(x)|qdµ(x)

}1/q

,
1

p
+

1

q
= 1.

If we choose µ = P , f = |Xn−X|r′, g ≡ 1 and p = r/r′, q = r/(r− r′) in the Hölder inequality,
we obtain

E[|Xn −X|r
′
] ≤ E[|Xn −X|r]r

′/r → 0.

(G) Xn →p X. If x is a continuity point of X, i.e., P (X = x) = 0, then for any ε > 0,

P (|I(Xn ≤ x)− I(X ≤ x)| > ε)

= P (|I(Xn ≤ x)− I(X ≤ x)| > ε, |X − x| > δ)

+P (|I(Xn ≤ x)− I(X ≤ x)| > ε, |X − x| ≤ δ)

≤ P (Xn ≤ x,X > x + δ) + P (Xn > x,X < x− δ) + P (|X − x| ≤ δ)

≤ P (|Xn −X| > δ) + P (|X − x| ≤ δ).

The first term converges to zero as n→∞ since Xn →p X. The second term can be arbitrarily
small if we choose δ is small, since limδ→0 P (|X − x| ≤ δ) = P (X = x) = 0. Thus, we have
shown that I(Xn ≤ x)→p I(X ≤ x). From the dominated convergence theorem,

Fn(x) = E[I(Xn ≤ x)]→ E[I(X ≤ x)] = FX(x).
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Thus, Xn →d X.
(H) One direction follows from (B). To prove the other direction, we use the contradiction.
Suppose there exists ε > 0 such that P (|Xn−X| > ε) does not converge to zero. Then we can
find a subsequence {Xn′} such hat P (|Xn′ − X| > ε) > δ for some δ > 0. However, by the
condition, we can choose a further subsequence Xn′′ such that Xn′′ →a.s. X then Xn′′ →p X
from A. This is a contradiction.
(I) Let X ≡ c. It is clear from the following:

P (|Xn − c| > ε) ≤ 1− Fn(c+ ε) + Fn(c− ε)→ 1− FX(c+ ε) + FX(c− ε) = 0.

†

Remark 3.3 Denote E[|X|r] as µr. Then as proving (F) in Theorem 3.1., we obtain µs−tr µr−st ≥
µr−ts where r ≥ s ≥ t ≥ 0. Thus, log µr is convex in r for r ≥ 0. Furthermore, the proof of (F )

says that µ
1/r
r is increasing in r.

Remark 3.4 For r ≥ 1, we denote E[|X|r]1/r as ‖X‖r (or ‖X‖Lr(P )). Clearly, ‖X‖r ≥ 0 and
the equality holds if and only if X = 0 a.s. For any constant λ, ‖λX‖r = |λ|‖X‖r. Furthermore,
we note that

E[|X+Y |r] ≤ E[(|X|+|Y |)|X+Y |r−1] ≤ E[|X|r]1/rE[|X+Y |r]1−1/r+E[|Y |r]1/rE[|X+Y |r]1−1/r.

Then we obtain a triangular inequality (called the Minkowski’s inequality)

‖X + Y ‖r ≤ ‖X‖r + ‖Y ‖r.

Therefore, ‖ · ‖r in fact is a norm in the linear space {X : ‖X‖r < ∞}. Such a normed space
is denoted as Lr(P ).

The following examples illustrate the results of Theorem 3.1.

Example 3.1 Suppose that Xn is degenerate at a point 1/n; i.e., P (Xn = 1/n) = 1. Then Xn

converges in distribution to zero. Indeed, Xn converges almost surely.

Example 3.2 X1, X2, ... are i.i.d with standard normal distribution. Then Xn →d X1 but Xn

does not converge in probability to X1.

Example 3.3 Let Z be a random variable with a uniform distribution in [0, 1]. Let Xn =
I(m2−k ≤ Z < (m + 1)2−k) when n = 2k + m where 0 ≤ m < 2k. Then Xn converges in
probability to zero but not almost surely. This example is already given in the second chapter.

Example 3.4 Let Z be Uniform(0, 1) and let Xn = 2nI(0 ≤ Z < 1/n). Then E[|Xn|r]]→∞
but Xn converges to zero almost surely.

The next theorem describes the necessary and sufficient conditions of convergence in mo-
ments from convergence in probability.

Theorem 3.2 (Vitali’s theorem) Suppose that Xn ∈ Lr(P ), i.e., ‖Xn‖r < ∞, where 0 <
r <∞ and Xn →p X. Then the following are equivalent:
(A) {|Xn|r} are uniformly integrable.
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(B) Xn →r X.
(C) E[|Xn|r]→ E[|X|r]. †

Proof (A) ⇒ (B) has been shown in proving (D) of Theorem 1.1. To prove (B) ⇒ (C), first
from the Fatou’s lemma, we have

lim inf
n

E[|Xn|r] ≥ E[|X|r].

Second, we apply the Fatou’s lemma to 2r(|Xn −X|r + |X|r)− |Xn|r ≥ 0 and obtain

E[2r|X|r − |X|r] ≤ 2r lim inf
n

E[|Xn −X|r] + 2rE[|X|r]− lim sup
n

E[|Xn|r].

Thus,
lim sup

n
E[|Xn|r] ≤ E[|X|r] + 2r lim inf

n
E[|Xn −X|r].

We conclude that E[|Xn|r]→ E[|X|r].
To prove (C)⇒ (A), we note that for any λ such that P (|X|r = λ) = 0, by the dominated

convergence theorem,

lim sup
n

E[|Xn|rI(|Xn|r ≥ λ)] = lim sup
n
{E[|Xn|r]− E[|Xn|rI(|Xn|r < λ)]} = E[|X|rI(|X|r ≥ λ)]

Thus,
lim
λ→∞

lim sup
n

E[|Xn|rI(|Xn|r ≥ λ)] = lim
λ→∞

lim sup
n

E[|X|rI(|X|r ≥ λ)] = 0.

†

From Theorem 3.2, we see that the uniform integrability plays an important role to ensure
the convergence in moments. One sufficient condition to check the uniform integrability of {Xn}
is the Liapunov condition: if there exists a positive constant ε0 such that lim supnE[|Xn|r+ε0] <
∞, then {|Xn|r} satisfies the uniform integrability condition. This is because

E[|Xn|rI(|Xn|r ≥ λ)] ≤ E[|Xn|r+ε0|]
λε0

.

3.1.3 Useful integral inequalities

We list some useful inequalities below, some of which have already been used. The first in-
equality is the Hölder inequality:

∫
|f(x)g(x)|dµ ≤

{∫
|f(x)|pdµ(x)

}1/p{∫
|g(x)|qdµ(x)

}1/q

,
1

p
+

1

q
= 1.

We briefly describe how the Hölder inequality is derived. First, the following inequality holds
(Young’s inequality):

|ab| ≤ |a|
p

p
+
|b|q
q
, a, b > 0,
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where the equality holds if and only if a = b. This inequality is clear from its geometric meaning.
In this inequality, we choose a = f(x)/

∫
{|f(x)|pdµ(x)}1/p and b = g(x)/

∫
{|g(x)|qdµ(x)}1/q

and integrate over x on both side. It gives the Hölder inequality and the equality holds if and
only if f(x) is proportional to g(x) almost surely. When p = q = 2, the inequality becomes

∫
|f(x)g(x)|dµ(x) ≤

{∫
f(x)2dµ(x)

}1/2{∫
g(x)2dµ(x)

}1/2

,

which is the Cauchy-Schwartz inequality. One implication is that for non-trivial X and Y ,
(E[|XY |])2 ≤ E[|X|2]E[|Y |2] and that the equality holds if and only if |X| = c0|Y | almost
surely for some constant c0.

A second important inequality is the Markov’s inequality, which was used in proving (C) of
Theorem 3.1:

P (|X| ≥ ε) ≤ E[g(|X|)]
g(ε)

,

where g ≥ 0 is a increasing function in [0,∞). We can choose different g to obtain many similar
inequalities. The proof of the Markov inequality is direct from the following:

P (|Y | > ε) = E[I(|Y | > ε)] ≤ E[
g(|Y |)
g(ε)

I(|Y | > ε)] ≤ E[
g(|Y |)
g(ε)

].

If we choose g(x) = x2 and X as X − E[X] in the Markov inequality, we obtain

P (|X − E[X]| ≥ ε) ≤ V ar(X)

ε2
.

This inequality is the Chebychev’s inequality and gives an upper bound for controlling the tail
probability of X using its variance.

In summary, we have introduced different modes of convergence for random variables and
obtained the relationship among these modes. The same definitions and relationship can be
generalized to random vectors. One additional remark is that since convergence almost surely
or in probability are special definitions of convergence almost everywhere or in measure as given
in the second chapter, all the theorems in Section 2.3.3 including the monotone convergence
theorem, the Fatou’s lemma and the dominated convergence theorem should apply. Conver-
gence in distribution is the only one specific to probability measure. In fact, this model will be
the main interest of the subsequent sections.

3.2 Convergence in Distribution

Among all the convergence modes of {Xn}, convergence in distribution is the weakest conver-
gence. However, this convergence plays an important and sufficient role in statistical inference,
especially when large sample behavior of random variables is of interest. We focus on such
particular convergence in this section.

3.2.1 Portmanteau theorem

The following theorem gives all equivalent conditions to the convergence in distribution for a
sequence of random variables {Xn}.
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Theorem 3.3 (Portmanteau Theorem) The following conditions are equivalent.
(a) Xn converges in distribution to X.
(b) For any bounded continuous function g(·), E[g(Xn)]→ E[g(X)].
(c) For any open set G in R, lim infn P (Xn ∈ G) ≥ P (X ∈ G).
(d) For any closed set F in R, lim supn P (Xn ∈ F ) ≤ P (X ∈ F ).
(e) For any Borel set O in R with P (X ∈ ∂O) = 0 where ∂O is the boundary of O, P (Xn ∈
O)→ P (X ∈ O). †

Proof (a) ⇒ (b). Without loss of generality, we assume |g(x)| ≤ 1. We choose [−M,M ] such
that P (|X| = M) = 0. Since g is continuous in [−M,M ], g is uniformly continuous in [−M,M ].
Thus for any ε, we can partition [−M,M ] into finite intervals I1 ∪ ... ∪ Im such that within
each interval Ik, maxIk g(x)−minIk g(x) ≤ ε and X has no mass at all the endpoints of Ik (this
is feasible since X has at most countable points with point masses). Therefore, if choose any
point xk ∈ Ik, k = 1, ..., m,

|E[g(Xn)]− E[g(X)]|
≤ E[|g(Xn)|I(|Xn| > M)] + E[|g(X)|I(|X| > M)]

+|E[g(Xn)I(|Xn| ≤M)]−
m∑

k=1

g(xk)P (Xn ∈ Ik)|

+|
m∑

k=1

g(xk)P (Xn ∈ Ik)−
m∑

k=1

g(xk)P (X ∈ Ik)|

+|E[g(X)I(|X| ≤M)]−
m∑

k=1

g(xk)P (X ∈ Ik)|

≤ P (|Xn| > M) + P (|X| > M) + 2ε +
m∑

k=1

|P (Xn ∈ Ik)− P (X ∈ Ik)|.

Thus, lim supn |E[g(Xn)]−E[g(X)]| ≤ 2P (|X| > M) + 2ε. Let M →∞ and ε→ 0. We obtain
(b).
(b)⇒ (c). For any open set G, we define a function

g(x) = 1− ε

ε+ d(x,Gc)
,

where d(x,Gc) is the minimal distance between x and Gc, defined as infy∈Gc |x− y|. Since for
any y ∈ Gc,

d(x1, G
c)− |x2 − y| ≤ |x1 − y| − |x2 − y| ≤ |x1 − x2|,

we have d(x1, G
c)− d(x2, G

c) ≤ |x1 − x2|. Then,

|g(x1)− g(x2)| ≤ ε−1|d(x1, G
c)− d(x2, G

c)| ≤ ε−1|x1 − x2|.

g(x) is continuous and bounded. From (a), E[g(Xn)] → E[g(X)]. Note g(x) = 0 if x /∈ G and
|g(x)| ≤ 1. Thus,

lim inf
n

P (Xn ∈ G) ≥ lim inf
n

E[g(Xn)]→ E[g(X)].
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Let ε→ 0 and we obtain E[g(X)] converges to E[I(X ∈ G)] = P (X ∈ G).
(c)⇒ (d). This is clear by taking complement of F .
(d)⇒ (e). For any O with P (X ∈ ∂O) = 0, we have

lim sup
n

P (Xn ∈ O) ≤ lim sup
n

P (Xn ∈ Ō) ≤ P (X ∈ Ō) = P (X ∈ O),

and
lim inf

n
P (Xn ∈ O) ≥ lim inf

n
P (Xn ∈ Oo) ≥ P (X ∈ Oo) = P (X ∈ O).

Here, Ō and Oo are the closure and interior of O respectively.
(e)⇒ (a). It is clear by choosing O = (−∞, x] with P (X ∈ ∂O) = P (X = x) = 0. †

The conditions in Theorem 3.3 are necessary, as seen in the following examples.

Example 3.5 Let g(x) = x, a continuous but unbounded function. Let Xn be a random
variable taking value n with probability 1/n and value 0 with probability (1 − 1/n). Then
Xn →d 0. However, E[g(X)] = 1 9 0. This shows that the boundness of g in condition (b) is
necessary.

Example 3.6 The continuity at boundary in (e) is also necessary: let Xn be degenerate at 1/n
and consider O = {x : x > 0}. Then P (Xn ∈ O) = 1 but Xn →d 0.

3.2.2 Continuity theorem

Another way of verifying convergence in distribution of Xn is via the convergence of the char-
acteristic functions of Xn, as given in the following theorem. This result is very useful in many
applications.

Theorem 3.4 (Continuity Theorem) Let φn and φ denote the characteristic functions of
Xn and X respectively. Then Xn →d X is equivalent to φn(t)→ φ(t) for each t. †

Proof To prove ⇒ direction, from (b) in Theorem 3.1,

φn(t) = E[eitXn ]→ E[eitX ] = φ(t).

We thus need to prove ⇐ direction. This proof consists of the following steps.
Step 1. We show that for any ε, there exists a M such that supn P (|Xn| > M) < ε. This
property is called asymptotic tightness of {Xn}. To see that, we note that

1

δ

∫ δ

−δ
(1− φn(t))dt = E[

1

δ

∫ δ

−δ
(1− eitXn)dt]

= E[2(1− sin δXn

δXn

)]

≥ E[2(1− 1

|δXn|
)I(|Xn| >

2

δ
)]

≥ P (|Xn| >
2

δ
).
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However, the left-hand side of the inequality converges to

1

δ

∫ δ

−δ
(1− φ(t))dt.

Since φ(t) is continuous at t = 0, this limit can be smaller than ε if we choose δ small enough.
Let M = 2

δ
. We obtain that when n > N0, P (|Xn| > M) < ε. Choose M larger then we can

have P (|Xk| > M) < ε, for k = 1, ..., N0. Thus,

sup
n
P (|Xn| > M) < ε.

Step 2. We show for any subsequence of {Xn}, there exists a further sub-sequence {Xnk} and
the distribution function for Xnk , denoted by Fnk , converges to some distribution function.
First, we need the Helly’s Theorem.

Helly’s Selection Theorem For every sequence {Fn} of distribution functions, there exists a
subsequence {Fnk} and a nondecreasing, right-continuous function F such that Fnk(x)→ F (x)
at continuity points x of F . †

We defer the proof of the Helly’s Selection Theorem to the end of the proof. Thus, from
this theorem, for any subsequence of {Xn}, we can find a further subsequence {Xnk} such that
Fnk(x) → G(x) for some nondecreasing and right-continuous function G and the continuity
points x of G. However, the Helly’s Selection Theorem does not imply that G is a distribution
function since G(−∞) and G(∞) may not be 0 or 1. But from the tightness of {Xnk}, for any
ε, we can choose M such that Fnk(−M) + (1−Fnk(M)) = P (|Xn| > M) < ε and we can always
choose M such that −M and M are continuity points of G. Thus, G(−M) + (1−G(M)) < ε.
Let M → ∞ and since 0 ≤ G(−M) ≤ G(M) ≤ 1, we conclude that G must be a distribution
function.

Step 3. We conclude that the subsequence {Xnk} in Step 2 converges in distribution to X.
Since Fnk weakly converges to G(x) and G(x) is a distribution function and φnk(t) converges to
φ(t), φ(t) must be the characteristic function corresponding to the distribution G(x). From the
uniqueness of the characteristic function in Theorem 1.1 (see the proof below), G(x) is exactly
the distribution of X. Therefore, Xnk →d X. The theorem has been proved.

We need to prove the Helly’s Selection Theorem: let r1, r2, ... be all the rational numbers.
For r1, we choose a subsequence of {Fn}, denoted by F11, F12, ... such that F11(r1), F12(r1), ...
converges. Then for r2, we choose a further subsequence from the above sequence, denote
by F21, F22, ... such that F21(r2), F22(r2), ... converges. We continue this for all the rational
numbers. We obtain a matrix of functions as follows:



F11 F12 . . .
F21 F22 . . .

...
...

. . .


 .

We finally select the diagonal functions, F11, F22, .... thus this subsequence converges for all the
rational numbers. We denote their limits as G(r1), G(r2), ... Define G(x) = infrk>xG(rk). It is
clear to see that G is nondecreasing. If xk decreases to x, for any ε > 0, we can find rs such that
rs ≥ x and G(x) > G(rs) − ε. Then when k is large, G(xk) − ε ≤ G(rs) − ε < G(x) ≤ G(xk).
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That is, limkG(xk) = G(x). Thus, G is right-continuous. If x is a continuity point of G, for
any ε, we can find two sequence of rational number {rk} and {rk′} such that rk decreases to x
and rk′ increases to x. Then after taking limits for the inequality Fll(rk′) ≤ Fll(x) ≤ Fll(rk), we
have

G(rk′) ≤ lim inf
l

Fll(x) ≤ lim sup
l

Fll(x) ≤ G(rk).

Let k →∞ then we obtain liml Fll(x) = G(x).
It remains to prove Theorem 1.1, whose proof is deferred here: after substituting φ(t) in to

the integration, we obtain

1

2π

∫ T

−T

e−ita − e−itb
it

φ(t)dt =
1

2π

∫ T

−T

∫ ∞

−∞

e−ita − e−itb
it

eitxdF (x)dt

=
1

2π

∫ ∞

−∞

∫ T

−T

eit(x−a) − eit(x−b)
it

dtdF (x).

The interchange of the integrations follows from the Fubini’s theorem. The last part is equal

∫ ∞

−∞

{
sgn(x− a)

π

∫ T |x−a|

0

sin t

t
dt− sgn(x− b)

π

∫ T |x−b|

0

sin t

t
dt

}
dF (x).

The integrand is bounded by 2
π

∫∞
0

sin t
t
dt and as T → ∞, it converges to 0, if x < a or x > b;

1/2, if x = a or x = b; 1, if x ∈ (a, b). Therefore, by the dominated convergence theorem, the
integral converges to

F (b−)− F (a) +
1

2
{F (b)− F (b−)}+

1

2
{F (a)− F (a−)} .

Since F is continuous at b and a, the limit is the same as F (b)− F (a). Furthermore, suppose
that F has a density function f . Then

F (x)− F (0) =
1

2π

∫ ∞

−∞

1− e−itx
it

φ(t)dt.

Since | ∂
∂x

1−e−itx
it

φ(t)| ≤ φ(t), according to the interchange between derivative and integration,
we obtain

f(x) =
1

2π

∫ ∞

−∞
e−itxφ(t)dt.

†

The above theorem indicates that to prove the weak convergence of a sequence of random
variables, it is sufficient to check the convergence of their characteristic functions. For example,
if X1, ..., Xn are i.i.d Bernoulli(p), then the characteristic function of X̄n = (X1 + ...+Xn)/n is
given by (1−p+peit/n)n converges to a function φ(t) = eitp, which is the characteristic function
for a degenerate random variable X ≡ p. Thus X̄n converges in distribution to p. Then from
Theorem 3.1, X̄n converges in probability to p.

Theorem 3.4 also has a multivariate version when Xn and X are k-dimensional random
vectors: Xn →d X if and only if E[exp{it ′Xn}] → E [exp{it ′X }], where t is any k-dimensional
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constant. Since the latter is equivalent to the weak convergence of t′Xn to t′X, we conclude
that the weak convergence of Xn to X is equivalent to the weak convergence of t′Xn to t′X
for any t. That is, to study the weak convergence of random vectors, we can reduce to study
the weak convergence of one-dimensional linear combination of the random vectors. This is the
well-known Cramér-Wold’s device:

Theorem 3.5 (The Cramér-Wold device) Random vector Xn in Rk satisfy Xn →d X if
and only t′Xn →d t

′X in R for all t ∈ Rk. †

3.2.3 Properties of convergence in distribution

Some additional results from convergence in distribution are the following theorems.

Theorem 3.6 (Continuous mapping theorem) Suppose Xn →a.s. X, or Xn →p X, or
Xn →d X. Then for any continuous function g(·), g(Xn) converges to g(X) almost surely, or
in probability, or in distribution. †

Proof If Xn →a.s. X, then clearly, g(Xn) →a.s g(X). If Xn →p X, then for any subsequence,
there exists a further subsequence Xnk →a.s. X. Thus, g(Xnk) →a.s. g(X). Then g(Xn) →p

g(X) from (H) in Theorem 3.1. To prove that g(Xn) →d g(X) when Xn →d X, we apply (b)
of Theorem 3.3. †

Remark 3.5 Theorem 3.6 concludes that g(Xn)→d g(X) if Xn →d X and g is continuous. In
fact, this result still holds if P (X ∈ C(g)) = 1 where C(g) contains all the continuity points
of g. That is, if g’s discontinuity points take zero probability of X, the continuous mapping
theorem holds.

Theorem 3.7 (Slutsky theorem) Suppose Xn →d X, Yn →p y and Zn →p z for some
constant y and z. Then ZnXn + Tn →d zX + y. †

Proof We first show that Xn + Yn →d X + y. For any ε > 0,

P (Xn + Yn ≤ x) ≤ P (Xn + Yn ≤ x, |Yn − y| ≤ ε) + P (|Yn − y| > ε)

≤ P (Xn ≤ x− y + ε) + P (|Yn − y| > ε).

Thus,
lim sup

n
FXn+Yn(x) ≤ lim sup

n
FXn(x− y + ε) ≤ FX(x− y + ε).

On the other hand,

P (Xn + Yn > x) = P (Xn + Yn > x, |Yn − y| ≤ ε) + P (|Yn − y| > ε)

≤ P (Xn > x− y − ε) + P (|Yn − y| > ε).
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Thus,

lim sup
n

(1− FXn+Yn(x)) ≤ lim sup
n

P (Xn > x− y − ε) ≤ lim sup
n

P (Xn ≥ x− y − 2ε)

≤ (1− FX(x− y − 2ε)).

We obtain

FX(x− y − 2ε) ≤ lim inf
n

FXn+Yn(x) ≤ lim sup
n

FXn+Yn(x) ≤ FX(x+ y + ε).

Let ε→ 0 then it holds

FX+y(x−) ≤ lim inf
n

FXn+Yn(x) ≤ lim sup
n

FXn+Yn(x) ≤ FX+y(x).

Thus, Xn + Yn →d X + y.
On the other hand, we have

P (|(Zn − z)Xn| > ε) ≤ P (|Zn − z| > ε2) + P (|Zn − z| ≤ ε2, |Xn| >
1

ε
).

Thus,

lim sup
n
P (|(Zn− z)Xn| > ε) ≤ lim sup

n
P (|Zn− z| > ε2) + lim sup

n
P (|Xn| ≥

1

2ε
)→ P (|X| ≥ 1

2ε
).

Since ε is arbitrary, we conclude that (Zn− z)Xn →p 0. Clearly zXn →d zX. Hence, ZnXn →d

zX from the proof in the first half. Again, using the first half’s proof, we obtain ZnXn+Yn →d

zX + y. †

Remark 3.6 In the proof of Theorem 3.7, if we replace Xn + Yn by aXn + bYn, we can show
that aXn+ bYn →d aX+ by by considering different cases of either a or b or both are non-zeros.
Then from Theorem 3.5, (Xn, Yn) →d (X, y) in R2. By the continuity theorem, we obtain
Xn + Yn →d X + y and XnYn →d Xy. This immediately gives Theorem 3.7.

Both Theorems 3.6 and 3.7 are useful in deriving the convergence of some transformed
random variables, as shown in the following examples.

Example 3.7 Suppose Xn →d N(0, 1). Then by continuous mapping theorem, X2
n →d χ

2
1.

Example 3.8 This example shows that g can be discontinuous in Theorem 3.6. Let Xn →d X
with X ∼ N(0, 1) and g(x) = 1/x. Although g(x) is discontinuous at origin, we can still show
that 1/Xn →d 1/X, the reciprocal of the normal distribution. This is because P (X = 0) = 0.
However, in Example 3.6 where g(x) = I(x > 0), it shows that Theorem 3.6 may not be true
if P (X ∈ C(g)) < 1.

Example 3.9 The condition Yn →p y, where y is a constant, is necessary. For example, let
Xn = X ∼ Uniform(0, 1). Let Yn = −X so Yn →d −X̃, where X̃ is an independent random
variable with the same distribution as X. However Xn+Yn = 0 does not converge in distribution
to the non-zero random variable X − X̃.
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Example 3.10 Let X1, X2, ... be a random sample from a normal distribution with mean µ
and variance σ2 > 0, then from the central limit theorem and the law of large number, which
will be given later, we have

√
n(X̄n − µ)→d N(0, σ2), s2

n =
1

n− 1

n∑

i=1

(Xi − X̄n)2 →a.s σ
2.

Thus, from Theorem 3.7, it gives

√
n(X̄n − µ)

sn
→d

1

σ
N(0, σ2) ∼= N(0, 1).

From the distribution theory, we know the left-hand side has a t-distribution with degrees of
freedom (n − 1). Then this result says that in large sample, tn−1 can be approximated by a
standard normal distribution.

3.2.4 Representation of convergence in distribution

As already seen before, working with convergence in distribution may not be easy, as compared
with convergence almost surely. However, if we can represent convergence in distribution as
convergence almost surely, many arguments can be simplified. The following famous theorem
shows that such a representation does exist.

Theorem 3.8 (Skorohod’s Representation Theorem) Let {Xn} and X be random vari-
ables in a probability space (Ω,A, P ) and Xn →d X. Then there exists another probability
space (Ω̃, Ã, P̃ ) and a sequence of random variables X̃n and X̃ defined on this space such that
X̃n and Xn have the same distributions, X̃ and X have the same distributions, and moreover,
X̃n →a.s. X̃. †

Before proving Theorem 3.8, we define the quantile function corresponding to a distribution
function F (x), denoted by F−1(p), for p ∈ [0, 1],

F−1(p) = inf{x : F (x) ≥ p}.

Some properties regarding the quantile function are given in the following proposition.

Proposition 3.1 (a) F−1 is left-continuous.
(b) If X has continuous distribution function F , then F (X) ∼ Uniform(0, 1).
(c) Let ξ ∼ Uniform(0, 1) and let X = F−1(ξ). Then for all x, {X ≤ x} = {ξ ≤ F (x)}. Thus,
X has distribution function F . †

Proof (a) Clearly, F−1 is nondecreasing. Suppose pn increases to p then F−1(pn) increases to
some y ≤ F−1(p). Then F (y) ≥ pn so F (y) ≥ p. Therefore F−1(p) ≤ y by the definition of
F−1(p). Thus y = F−1(p). F−1 is left-continuous.
(b) {X ≤ x} ⊂ {F (X) ≤ F (x)}. Thus, F (x) ≤ P (F (X) ≤ F (x)). On the other hand,
{F (X) ≤ F (x)− ε} ⊂ {X ≤ x}. Thus, P (F (X) ≤ F (x)− ε) ≤ F (x). Let ε→ 0 and we obtain
P (F (X) ≤ F (x)−) ≤ F (x). Then if X is continuous, we have P (F (X) ≤ F (x)) = F (x) so
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F (X) ∼ Uniform(0, 1).
(c) P (X ≤ x) = P (F−1(ξ) ≤ x) = P (ξ ≤ F (x)) = F (x). †

Proof Using the quantile function, we can construct the proof of Theorem 3.8. Let (Ω̃, Ã, P̃ )
be ([0, 1],B ∩ [0, 1], λ), where λ is the Borel measure. Define X̃n = F−1

n (ξ), X̃ = F−1(ξ), where
ξ is uniform random variable on (Ω̃, Ã, P̃ ). From (c) in the previous proposition, X̃n has a
distribution Fn which is the same as Xn. It remains to show X̃n →a.s. X.

For any t ∈ (0, 1) such that there is at most one value x such that F (x) = t (it is easy to
see t is the continuous point of F−1), we have that for any z < x, F (z) < t. Thus, when n is
large, Fn(z) < t so F−1

n (t) ≥ z. We obtain lim infn F
−1
n (t) ≥ z. Since z is any number less than

x, we have lim infn F
−1
n (t) ≥ x = F−1(t). On the other hand, from F (x + ε) > t, we obtain

when n is large enough, Fn(x+ ε) > t so F−1
n (t) ≤ x+ ε. Thus, lim supn F

−1
n (t) ≤ x+ ε. Since

ε is arbitrary, we obtain lim supn F
−1
n (t) ≤ x.

We conclude F−1
n (t)→ F−1(t) for any t which is continuous point of F−1. Thus F−1

n (t)→
F−1(t) for almost every t ∈ (0, 1). That is, X̃n →a.s. X̃. †

This theorem can be useful in a lot of arguments. For example, if Xn →d X and one
wishes to show some function of Xn, denote by g(Xn), converges in distribution to g(X), then
by the representation theorem, we obtain X̃n and X̃ and X̃n →a.s. X̃. Thus, if we can show
g(X̃n) →a.s. g(X̃), which is often easy to show, then of course, g(X̃n) →d g(X̃). Since g(X̃n)
has the same distribution as g(Xn) and so are g(X̃) and g(X), g(Xn) →d g(X). Using this
technique, readers should easily prove the continuous mapping theorem. Also see the diagram
in Figure 2.

Figure 2: Representation of Convergence in Distribution

Our final remark of this section is that all the results such as the continuous mapping
theorem, the Slutsky theorem and the representation theorem can be in parallel given for the
convergence of random vectors. The proofs for random vectors are based on the Cramé-Wold’s
device.

3.3 Summation of Independent Random Variables

The summation of independent random variables are commonly seen in statistical inference.
Specially, many statistics can be expressed as the summation of i.i.d random variables. Thus,
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this section gives some classical large sample results for this type of statistics, which include
the weak/strong law of large numbers, the central limit theorem, and the Delta method etc.

3.3.1 Preliminary lemma

Proposition 3.2 (Borel-Cantelli Lemma) For any events An,

∞∑

i=1

P (An) <∞

implies P (An, i.o.) = P ({An} occurs infinitely often) = 0; or equivalently, P (∩∞n=1 ∪m≥n Am) =
0. †

Proof
P (An, i.o) ≤ P (∪m≥nAm) ≤

∑

m≥n
P (Am)→ 0, as n→∞.

†

As a result of the proposition, if for a sequence of random variables, {Zn}, and for any ε > 0,∑
n P (|Zn| > ε) < ∞. Then with probability one, |Zn| > ε only occurs finite times. That is,

Zn →a.s. 0.

Proposition 3.3 (Second Borel-Cantelli Lemma) For a sequence of independent events
A1, A2, ...,

∑∞
n=1 P (An) =∞ implies P (An, i.o.) = 1. †

Proof Consider the complement of {An, i.o}. Note

P (∪∞n=1 ∩m≥n Acm) = lim
n
P (∩m≥nAcm) = lim

n

∏

m≥n
(1− P (Am)) ≤ lim sup

n
exp{−

∑

m≥n
P (Am)} = 0.

†

Proposition 3.4 X,X1, ..., Xn are i.i.d with finite mean. Define Yn = XnI(|Xn| ≤ n). Then∑∞
n=1 P (Xn 6= Yn) <∞. †

Proof Since E[|X|] <∞,

∞∑

n=1

P (Xn 6= Yn) ≤
∞∑

n=1

P (|X| ≥ n) =

∞∑

n=1

nP (n ≤ |X| < (n + 1)) ≤
∞∑

n=1

E[|X|] <∞.

From the Borel-Cantelli Lemma, P (Xn 6= Yn, i.o) = 0. That is, for almost every ω ∈ Ω, when
n is large enough, Xn(ω) = Yn(ω). †
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3.3.2 Law of large numbers

We start to prove the weak and strong law of large numbers.

Theorem 3.9 (Weak Law of Large Number) If X,X1, ..., Xn are i.i.d with mean µ (so
E[|X|] <∞ and µ = E[X]), then X̄n →p µ. †

Proof Define Yn = XnI(−n ≤ Xn ≤ n). Let µ̄n =
∑n

k=1E[Yk]/n. Then by the Chebyshev’s
inequality,

P (|Ȳn − µ̄n| ≥ ε) ≤ V ar(Ȳn)

ε2
≤
∑n

k=1 V ar(XkI(|Xk| ≤ k))

n2ε2
.

Since

V ar(XkI(|Xk| ≤ k)) ≤ E[X2
kI(|Xk| ≤ k)]

= E[X2
kI(|Xk| ≤ k, |Xk| ≥

√
kε2)] + E[X2

kI(|Xk| ≤ k, |X| ≤
√
kε2)]

≤ kE[|Xk|I(|Xk| ≥
√
kε2)] + kε4,

P (|Ȳn − µ̄n| ≥ ε) ≤
∑n

k=1 E[|X|I(|X| ≥
√
kε2)]

nε2
+ ε2

n(n + 1)

2n2
.

Thus, lim supn P (|Ȳn − µ̄n| ≥ ε) ≤ ε2. We conclude that Ȳn − µ̄n →p 0. On the other hand,
µ̄n → µ. We obtain Ȳn →p µ. This implies that for any subsequence, there is a further
subsequence Ȳnk →a.s. µ. Since Xn is eventually the same as Yn for almost every ω from
Proposition 3.4, we conclude X̄nk →a.s. µ. This implies Xn →p µ. †

Theorem 3.10 (Strong Law of Large Number) If X1, ..., Xn are i.i.d with mean µ then
X̄n →a.s. µ. †

Proof Without loss of generality, we assume Xn ≥ 0 since if this is true, the result also holds
for any Xn by Xn = X+

n −X−n .
Similar to Theorem 3.9, it is sufficient to show Ȳn →a.s. µ, where Yn = XnI(Xn ≤ n). Note

E[Yn] = E[X1I(X1 ≤ n)]→ µ so
n∑

k=1

E[Yk]/n→ µ.

Thus, if we denote S̃n =
∑n

k=1(Yk−E[Yk]) and we can show S̃n/n→a.s. 0, then the result holds.
Note

V ar(S̃n) =
n∑

k=1

V ar(Yk) ≤
n∑

k=1

E[Y 2
k ] ≤ nE[X2

1 I(X1 ≤ n)].

Then by the Chebyshev’s inequality,

P (| S̃n
n
| > ε) ≤ 1

n2ε2
V ar(S̃n) ≤ E[X2

1 I(X1 ≤ n)]

nε2
.
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For any α > 1, let un = [αn]. Then

∞∑

n=1

P (| S̃un
un
| > ε) ≤

∞∑

n=1

1

unε2
E[X2

1I(X1 ≤ un)] ≤ 1

ε2
E[X2

1

∑

un≥X1

1

un
].

Since for any x > 0,
∑

un≥x{µn}−1 < 2
∑

n≥log x/ logα α
−n ≤ Kx−1 for some constant K, we

have ∞∑

n=1

P (| S̃un
un
| > ε) ≤ K

ε2
E[X1] <∞,

From the Borel-Cantelli Lemma in Proposition 3.2, S̃un/un →a.s. 0.
For any k, we can find un < k ≤ un+1. Thus, since X1, X2, ... ≥ 0,

S̃un
un

un
un+1

≤ S̃k
k
≤ S̃un+1

un+1

un+1

un
.

After taking limits in the above, we have

µ/α ≤ lim inf
k

S̃k
k
≤ lim sup

k

S̃k
k
≤ µα.

Since α is arbitrary number larger than 1, let α → 1 and we obtain limk S̃k/k = µ. The proof
is completed. †

3.3.3 Central limit theorem

We now consider the central limit theorem. All the proofs can be based on the convergence of
the corresponding characteristic function. The following lemma describes the approximation of
a characteristic function.

Proposition 3.5 Suppose E[|X|m] <∞ for some integer m ≥ 0. Then

|φX(t)−
m∑

k=0

(it)k

k!
E[Xk]|/|t|m → 0, as t→ 0.

†

Proof We note the following expansion for eitx,

eitx =

m∑

k=1

(itx)k

k!
+

(itx)m

m!
[eitθx − 1],

where θ ∈ [0, 1]. Thus,

|φX(t)−
m∑

k=0

(it)k

k!
E[Xk]|/|t|m ≤ E[|X|m|eitθX − 1|]/m!→ 0,
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as t→ 0. †

Theorem 3.11 (Central Limit Theorem) If X1, ..., Xn are i.i.d with mean µ and variance
σ2 then

√
n(X̄n − µ)→d N(0, σ2). †

Proof Denote Yn =
√
n(X̄n − µ). We consider the characteristic function of Yn.

φYn(t) =
{
φX1−µ(t/

√
n)
}n
.

Using Proposition 3.5, we have φX1−µ(t/
√
n) = 1− σ2t2/2n+ o(1/n). Thus,

φYn(t)→ exp{−σ
2t2

2
}.

The result holds. †

Theorem 3.12 (Multivariate Central Limit Theorem) If X1, ..., Xn are i.i.d random
vectors in Rk with mean µ and covariance Σ = E[(X−µ)(X−µ)′], then

√
n(X̄n−µ)→d N(0,Σ).

†

Proof Similar to Theorem 3.11, but this time, we consider a multivariate characteristic function
E[exp{i√nt′(X̄n − µ)}]. Note the result of Proposition 3.5 holds for this multivariate case. †

Theorem 3.13 (Liapunov Central Limit Theorem) Let Xn1, ..., Xnn be independent ran-
dom variables with µni = E[Xni] and σ2

ni = V ar(Xni). Let µn =
∑n

i=1 µni, σ
2
n =

∑n
i=1 σ

2
ni.

If
n∑

i=1

E[|Xni − µni|3]

σ3
n

→ 0,

then
∑n

i=1(Xni − µni)/σn →d N(0, 1). †

We skip the proof of Theorem 3.13 but try to give a proof for the following Theorem 3.14,
for which Theorem 3.13 is a special case.

Theorem 3.14 (Lindeberg-Fell Central Limit Theorem) Let Xn1, ..., Xnn be independent
random variables with µni = E[Xni] and σ2

ni = V ar(Xni). Let σ2
n =

∑n
i=1 σ

2
ni. Then both∑n

i=1(Xni−µni)/σn →d N(0, 1) and max {σ2
ni/σ

2
n : 1 ≤ i ≤ n} → 0 if and only if the Lindeberg

condition
1

σ2
n

n∑

i=1

E[|Xni − µni|2I(|Xni − µni| ≥ εσn)]→ 0, for all ε > 0

holds. †
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Proof “⇐′′: We first show that max{σ2
nk/σ

2
n : 1 ≤ k ≤ n} → 0.

σ2
nk/σ

2
n ≤ E[|(Xnk − µk)/σn|2]

≤ 1

σ2
n

{
E[I(|Xnk − µnk| ≥ εσn)(Xnk − µnk)2] + E[I(|Xnk − µnk| < εσn)(Xnk − µnk)2]

}

≤ 1

σ2
n

E[I(|Xnk − µnk| ≥ εσn)(Xnk − µnk)2] + ε2.

Thus,

max
k
{σ2

nk/σ
2
n} ≤

1

σ2
n

n∑

k=1

E[|Xnk − µnk|2I(|Xnk − µnk| ≥ εσn)] + ε2.

From the Lindeberg condition, we immediately obtain

max
k
{σ2

nk/σ
2
n} → 0.

To prove the central limit theorem, we let φnk(t) be the characteristic function of (Xnk −
µnk)/σn. We note

|φnk(t)− (1− σ2
nk

σ2
n

t2

2
)|

≤E
[∣∣∣eit(Xnk−µnk)/σn −

2∑

j=0

(it)j

j!

(
Xnk − µnk

σn

)j ∣∣∣
]

≤E
[
I(|Xnk − µnk| ≥ εσn)

∣∣∣eit(Xnk−µnk)/σn −
2∑

j=0

(it)j

j!

(
Xnk − µnk

σn

)j ∣∣∣
]

+ E

[
I(|Xnk − µnk| < εσn)

∣∣∣eit(Xnk−µnk)/σn −
2∑

j=0

(it)j

j!

(
Xnk − µnk

σn

)j ∣∣∣
]
.

From the expansion in proving Proposition 3.5, the inequality |eitx − (1 + itx− t2x2/2)| ≤ t2x2

so we apply it to the first half on the right-hand side. Additionally, from the Taylor expansion,
|eitx − (1 + itx − t2x2/2)| ≤ |t|3|x|3/6 so we apply it to the second half of the right-hand side.
Then, we obtain

|φnk(t)− (1− σ2
nk

σ2
n

t2

2
)|

≤E
[
I(|Xnk − µnk| ≥ εσn)t2

(
Xnk − µnk

σn

)2
]

+ E

[
I(|Xnk − µnk| < εσn)|t|3 |Xnk − µnk|3

6σ3
n

∣∣∣
]

≤ t
2

σ2
n

E[(Xnk − µnk)2I(|Xnk − µnk| ≥ εσn)] +
ε|t|3

6

σ2
nk

σ2
n

.

Therefore,

n∑

k=1

|φnk(t)− (1− t2

2

σ2
nk

σ2
n

)| ≤ t2

σ2
n

n∑

k=1

E[I(|Xnk − µnk| ≥ εσn)(Xnk − µnk)2] +
ε|t|3

6
.
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This summation goes to zero as n→∞ then ε→ 0.
Since for any complex numbers Z1, ..., Zm,W1, ...,Wm with norm at most 1,

|Z1 · · ·Zm −W1 · · ·Wm| ≤
m∑

k=1

|Zk −Wk|,

we have

|
n∏

k=1

φnk(t)−
n∏

k=1

(1− t2

2

σ2
nk

σ2
n

))| ≤
n∑

k=1

|φnk(t)− (1− t2

2

σ2
nk

σ2
n

)| → 0.

On the other hand, from |ez − 1− z| ≤ |z|2e|z|,

|
n∏

k=1

e−t
2σ2
nk/2σ

2
n −

n∏

k=1

(1− t2

2

σ2
nk

σ2
n

))| ≤
n∑

k=1

|e−t2σ2
nk/2σ

2
n − 1 + t2σ2

nk/2σ
2
n|

≤
n∑

k=1

et
2σ2
nk/2σ

2
nt4σ4

nk/4σ
4
n ≤ (max

k
{σnk/σn})2et

2/2t4/4→ 0.

We have

|
n∏

k=1

φnk(t)−
n∏

k=1

e−t
2σ2
nk/2σ

2
n | → 0.

The result thus follows by noticing

n∏

k=1

e−t
2σ2
nk/2σ

2
n → e−t

2/2.

“⇒′′: First, we note that from 1− cos x ≤ x2/2,

t2

2σ2
n

n∑

k=1

E[|Xnk − µnk|2I(|Xnk − µnk| > εσn)] ≤ t2

2
−

n∑

k=1

∫

|Xnk−µnk |≤εσn

t2y2

2σ2
n

dFnk(y)

≤ t2

2
−

n∑

k=1

∫

|Xnk−µnk |≤εσn
[1− cos(ty/σn)]dFnk(y),

where Fnk is the distribution for Xnk − µnk. On the other hand, since max{σnk/σn} → 0,
maxk |φnk(t)− 1| → 0 uniformly on any finite interval of t. Then

|
n∑

k=1

logφnk(t)−
n∑

k=1

(φnk(t)− 1)| ≤
n∑

k=1

|φnk(t)− 1|2 ≤ max
k
{|φnk(t)− 1|}

n∑

k=1

|φnk(t)− 1|

≤ max
k
{|φnk(t)− 1|}

n∑

k=1

t2σ2
nk/σ

2
n.

Thus,
n∑

k=1

log φnk(t) =
n∑

k=1

(φnk(t)− 1) + o(1).
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Since
∑n

k=1 log φnk(t)→ −t2/2 uniformly in any finite interval of t, we obtain

n∑

k=1

(1− φnk(t)) = t2/2 + o(1)

uniformly in finite interval of t. That is,

n∑

k=1

∫
(1− cos(ty/σn))dFnk(y) = t2/2 + o(1).

Therefore, for any ε and for any |t| ≤M , when n is large,

t2

2σ2
n

n∑

k=1

E[|Xnk − µnk|2I(|Xnk − µnk| > εσn)] ≤
n∑

k=1

∫

|Xnk−µnk |>εσn
[1− cos(ty/σn)]dFnk(y) + ε

≤ 2
n∑

k=1

∫

|Xnk−µnk |>εσn
dFnk(y) + ε ≤ 2

ε2

n∑

k=1

E[|Xnk − µnk|2]

σ2
n

+ ε ≤ 2/ε2 + ε.

Let t = M = 1/ε3 and we obtain the Lindeberg condition. †

Remark 3.7 To see how Theorem 3.14 implies the result in Theorem 3.13, we note that

1

σ2
n

n∑

i=1

E[|Xnk − µnk|2I(|Xnk − µnk| > εσn)] ≤ 1

ε3σ3
n

n∑

k=1

E[|Xnk − µnk|3].

We give some examples to show the application of the central limit theorems in statistics.

Example 3.11 This is one example from a simple linear regression. Suppose Xj = α+βzj + εj
for j = 1, 2, ... where zj are known numbers not all equal and the εj are i.i.d with mean zero
and variance σ2. We know that the least square estimate for β is given by

β̂n =

n∑

j=1

Xj(zj − z̄n)/

n∑

j=1

(zj − z̄n)2

= β +

n∑

j=1

εj(zj − z̄n)/

n∑

j=1

(zj − z̄n)2.

Assume

max
j≤n

(zj − z̄n)2/

n∑

j=1

(zj − z̄n)2 → 0.

we can show that the Lindeberg condition is satisfied. Thus, we conclude that

√
n

√∑n
j=1(zj − z̄n)2

n
(β̂n − β)→d N(0, σ2).
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Example 3.12 The example is taken from the randomization test for paired comparison. In a
paired study comparing treatment vs control, 2n subjects are grouped into n pairs. For pair, it
is decided at random that one subject receives treatment but not the other. Let (Xj, Yj) denote
the values of jth pairs with Xj being the result of the treatment. The usual paired t-test is
based on the normality of Zj = Xj − Yj which may be invalid in practice. The randomization
test (sometimes called permutation test) avoids this normality assumption, solely based on
the virtue of the randomization that the assignments of the treatment and the control are
independent in the pair, i.e., conditional on |Zj| = zj, Zj = |Zj|sgn(Zj) is independent taking
values ±|Zj| with probability 1/2, when treatment and control have no difference. Therefore,
conditional on z1, z2, ..., the randomization t-test, based on the t-statistic

√
n− 1Z̄n/sz where s2

z

is 1/n
∑n

j=1(Zj − Z̄n)2, has a discrete distribution on 2n equally likely values. We can simulate
this distribution by the Monte Carlo method easily. Then if this statistic is large, there is strong
evidence that treatment has large value. When n is large, such computation can be intimate,
a better solution is to find an approximation. The Lindeberg-Feller central limit theorem can
be applied if we assume

max
j≤n

z2
j /

n∑

j=1

z2
j → 0.

It can be shown that this statistic has an asymptotic normal distribution N(0, 1). The details
can be found in Ferguson, page 29.

Example 3.13 In Ferguson, page 30, an example of applying the central limit theorem is given
for the signed-rank test for paired comparisons. Interested readers can find more details there.

3.3.4 Delta method

In many situation, the statistics are not simply the summation of independent random variables
but a transformation of the latter. In this case, the Delta method can be used to obtain a similar
result to the central limit theorem.

Theorem 3.15 (Delta method) For random vector X and Xn in Rk , if there exists two
constant an and µ such that an(Xn−µ)→d X and an →∞, then for any function g : Rk 7→ Rl

such that g has a derivative at µ, denoted by ∇g(µ)

an(g(Xn)− g(µ))→d ∇g(µ)X.

†

Proof By the Skorohod representation, we can construct X̃n and X̃ such that X̃n ∼d Xn and
X̃ ∼d X (∼d means the same distribution) and an(X̃n−µ)→a.s. X̃. Then an(g(X̃n)−g(µ))→a.s.

∇g(µ)X̃. We obtain the result. †

As a corollary of Theorem 3.15, if
√
n(X̄n − µ) →d N(0, σ2), then for any differentiable

function g(·), √n(g(X̄n)− g(µ))→d N(0, g′(µ)2σ2).
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Example 3.14 Let X1, X2, ... be i.i.d with fourth moment. An estimate of the sample vari-
ance is s2

n = (1/n)
∑n

i=1(Xi − X̄n)2. We can use the Delta method in deriving the asymp-
totic distribution of s2

n. Denote mk as the kth moment of X1 for k ≤ 4. Note that s2
n =

(1/n)
∑n

i=1 X
2
i − (

∑n
i=1 Xi/n)2 and

√
n

[(
X̄n

(1/n)
∑n

i=1 X
2
i

)
−
(
m1

m2

)]
→d N

(
0,

(
m2 −m1 m3 −m1m2

m3 −m1m2 m4 −m2
2

))
,

we can apply the Delta method with g(x, y) = y − x2 to obtain

√
n(s2

n − V ar(X1))→d N(0, m4 − (m2 −m2
1)2).

Example 3.15 Let (X1, Y1), (X2, Y2), ... be i.i.d bivariate samples with finite fourth moment.
One estimate of the correlation among X and Y is

ρ̂n =
sxy√
s2
xs

2
y

,

where sxy = (1/n)
∑n

i=1(Xi−X̄n)(Yi−Ȳn), s2
x = (1/n)

∑n
i=1(Xi−X̄n)2 and s2

y = (1/n)
∑n

i=1(Yi−
Ȳn)2. To derive the large sample distribution of ρ̂n, we can first obtain the large sample
distribution of (sxy, s

2
x, s

2
y) using the Delta method as in Example 3.14 then further apply the

Delta method with g(x, y, z) = x/
√
yz. We skip the details.

Example 3.16 The example is taken from the Pearson’s Chi-square statistic. Suppose that
one subject falls into K categories with probabilities p1, ..., pK, where p1 + ... + pK = 1. We
actually observe n1, ..., nk subjects in these categories from n = n1 + ...+nK i.i.d subjects. The
Pearson’s statistic is defined as

χ2 = n

K∑

k=1

(
nk
n
− pk)2/pk,

which can be treated as
∑

(observed count− expected count)2/expected count. To obtain the
asymptotic distribution of χ2, we note that

√
n(n1/n − p1, ..., nK/n − pK) has an asymptotic

multivariate normal distribution. Then we can apply the Delta method to g(x1, ..., xK) =∑K
i=1 x

2
k.

3.4 Summation of Non-independent Random Variables

In statistical inference, one will also encounter the summation of non-independent random
variables. Theoretical results of the large sample theory for general non-independent random
variables do not exist but for some summations with special structure, we have the similar
results to the central limit theorem. These special cases include the U-statistics, the rank
statistics, and the martingales.
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3.4.1 U-statistics

We suppose X1, ..., Xn are i.i.d. random variables.

Definition 3.6 A U-statistics associated with h̃(x1, ..., xr) is defined as

Un =
1

r!
(
n
r

)
∑

β

h̃(Xβ1, ..., Xβr),

where the sum is taken over the set of all unordered subsets β of r different integers chosen
from {1, ..., n}. †

One simple example is h̃(x, y) = xy. Then Un = (n(n − 1))−1
∑

i6=jXiXj. Many examples
of U statistics arise from rank-based statistical inference. If let X(1), ..., X(n) be the ordered
random variables of X1, ..., Xn, one can see

Un = E[h̃(X1, ..., Xr)|X(1), ..., X(n)].

Clearly, Un is the summation of non-independent random variables.
If define h(x1, ..., xr) as (r!)−1

∑
(x̃1,...,x̃r) is permutation of (x1, ..., xr) h̃(x̃1, ..., x̃r), then h(x1, ..., xr)

is permutation-symmetric and moreover,

Un =
1(
n
r

)
∑

β1<...<βr

h(β1, ..., βr).

In the last expression, h is called the kernel of the U-statistic Un.
The following theorem says that the limit distribution of U is the same as the limit distri-

bution of a sum of i.i.d random variables. Thus, the central limit theorem can be applied to
U .

Theorem 3.16 Let µ = E[h(X1, ..., Xr)]. If E[h(X1, ..., Xr)
2] <∞, then

√
n(Un − µ)−√n

n∑

i=1

E[Un − µ|Xi]→p 0.

Consequently,
√
n(Un − µ) is asymptotically normal with mean zero and variance r2σ2, where,

with X1, ..., Xr, X̃1, ..., X̃r i.i.d variables,

σ2 = Cov(h(X1, X2, ..., Xr), h(X1, X̃2, ..., X̃r)).

†

To prove Theorem 3.16, we need the following lemmas. Let S be a linear space of random
variables with finite second moments that contain the constants; i.e., 1 ∈ S and for any X, Y ∈
S, aX + bY ∈ Sn where a and b are constants. For random variable T , a random variable S is
called the projection of T on S if E[(T − S)2] minimizes E[(T − S̃)2], S̃ ∈ S.

Proposition 3.6 Let S be a linear space of random variables with finite second moments.
Then S is the projection of T on S if and only if S ∈ S and for any S̃ ∈ S, E[(T − S)S̃] = 0.
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Every two projections of T onto S are almost surely equal. If the linear space S contains the
constant variable, then E[T ] = E[S] and Cov(T − S, S̃) = 0 for every S̃ ∈ S. †

Proof For any S and S̃ in S,

E[(T − S̃)2] = E[(T − S)2] + 2E[(T − S)S̃] + E[(S − S̃)2].

Thus, if S satisfies that E[(T − S)S̃] = 0, then E[(T − S̃)2] ≥ E[(T − S)2]. Thus, S is
the projection of T on S. On the other hand, if S is the projection, for any constant α,
E[(T − S − αS̃)2] is minimized at α = 0. Calculate the derivative at α = 0 and we obtain
E[(T − S)S̃] = 0.

If T has two projections S1 and S2, then from the above argument, we have E[(S1−S2)2] = 0.
Thus, S1 = S2, a.s. If the linear space S contains the constant variable, we choose S̃ = 1. Then
0 = E[(T − S)S̃] = E[T ]− E[S]. Clearly, Cov(T − S, S̃) = E[(T − S)S̃] = 0. †

Proposition 3.7 Let Sn be linear space of random variables with finite second moments
that contain the constants. Let Tn be random variables with projections Sn on to Sn. If
V ar(Tn)/V ar(Sn)→ 1 then

Zn ≡
Tn − E[Tn]√
V ar(Tn)

− Sn − E[Sn]√
V ar(Sn)

→p 0.

†

Proof E[Zn] = 0. Note that

V ar(Zn) = 2− 2
Cov(Tn, Sn)√
V ar(Tn)V ar(Sn)

.

Since Sn is the projection of Tn, Cov(Tn, Sn) = Cov(Tn − Sn, Sn) + V ar(Sn) = V ar(Sn). We
have

V ar(Zn) = 2(1−
√
V ar(Sn)

V ar(Tn)
)→ 0.

By the Markov’s inequality, we conclude that Zn →p 0. †

The above lemma implies that if Sn is the summation of i.i.d random variables such that
(Sn − E[Sn])/

√
V ar(Sn)→d N(0, σ2), so is (Tn − E[Tn])/

√
V ar(Tn). The limit distribution of

U-statistics is derived using this lemma.
We now start to prove Theorem 3.16.

Proof Let X̃1, ..., X̃r be random variables with the same distribution as X1 and they are
independent of X1, ..., Xn. Denote Ũn by

∑n
i=1 E[U −µ|Xi]. We show that Ũn is the projection

of Un on the linear space Sn = {g1(X1) + ... + gn(Xn) : E[gk(Xk)
2] <∞, k = 1, ..., n}, which

contains the constant variables. Clearly, Ũn ∈ Sn. For any gk(Xk) ∈ Sn,

E[(Un − Ũn)gk(Xk)] = E[E[Un − Ũn|Xk]gk(Xk)] = 0.
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In fact, we can easily see that

Ũn =

n∑

i=1

(
n−1
r−1

)
(
n
r

) E[h(X̃1, ..., X̃r−1, Xi)− µ|Xi] =
r

n

n∑

i=1

E[h(X̃1, ..., X̃r−1, Xi)− µ|Xi].

Thus,

V ar(Ũn) =
r2

n2

n∑

i=1

E[(E[h(X̃1, ..., X̃r−1, Xi)− µ|Xi])
2]

=
r2

n
Cov(E[h(X̃1, ..., X̃r−1, X1)|X1], E[h(X̃1, ..., X̃r−1, X1)|X1])

=
r2

n
Cov(h(X1, X̃2, ..., X̃r), h(X1, X2..., Xr)) =

r2σ2

n
,

where we use the equation

Cov(X, Y ) = Cov(E[X|Z], E[Y |Z]) + E[Cov(X, Y |Z)].

Furthermore,

V ar(Un) =

(
n

r

)−2∑

β

∑

β′

Cov(h(Xβ1, ..., Xβr), h(Xβ′1, ..., Xβ′r))

=

(
n

r

)−2 r∑

k=1

∑

β and β′ share k components

Cov(h(X1, X2, .., Xk, Xk+1, ..., Xr), h(X1, X2, ..., Xk, X̃k+1, ..., X̃r)).

Since the number of β and β ′ sharing k components is equal to
(
n
r

)(
r
k

)(
n−r
r−k
)
, we obtain

V ar(Un) =
r∑

k=1

r!

k!(r − k)!

(n− r)(n− r + 1) · · · (n− 2r + k + 1)

n(n− 1) · · · (n− r + 1)

×Cov(h(X1, X2, .., Xk, Xk+1, ..., Xr), h(X1, X2, ..., Xk, X̃k+1, ..., X̃r)).

The dominating term in Un is the first term of order 1/n while the other terms are of order
1/n2. That is,

V ar(Un) =
r2

n
Cov(h(X1, X2, ..., Xr), h(X1, X̃2, ..., X̃r)) +O(

1

n2
).

We conclude that V ar(Un)/V ar(Ũn)→ 1. From Proposition 3.7, it holds that

Un − µ√
V ar(Un)

− Ũn√
V ar(Ũn)

→p 0.

Theorem 3.16 thus holds. †
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Example 3.17 In a bivariate i.i.d sample (X1, Y1), (X2, Y2), ..., one statistic of measuring the
agreement is called Kendall’s τ -statistic given as

τ̂ =
4

n(n− 1)

∑∑

i<j

I {(Yj − Yi)(Xj −Xi) > 0} − 1.

It can be seen that τ̂ + 1 is a U-statistic of order 2 with the kernel

2I {(y2 − y1)(x2 − x1) > 0} .

Hence, by the above central limit theorem,
√
n(τ̂n + 1 − 2P ((Y2 − Y1)(X2 −X1) > 0)) has an

asymptotic normal distribution with mean zero. The asymptotic variance can be computed as
in Theorem 3.16.

3.4.2 Rank statistics

For a sequence of i.i.d random variables X1, ..., Xn, we can order them from the smallest to
the largest and denote by X(1) ≤ X(2) ≤ ... ≤ X(n). The latter is called order statistics of the
original sample. The rank statistics, denoted by R1, ..., Rn are the ranks of Xi among X1, ..., Xn.
Thus, if all the X’s are different, Xi = X(Ri). When there are ties, Ri is defined as the average
of all indices such that Xi = X(j) (sometimes called midrank). To avoid possible ties, we only
consider the case that X’s have continuous densities.

By name, a rank statistic is any function of the ranks. A linear rank statistic is a rank
statistic of the special form

∑n
i=1 a(i, Ri) for a given matrix (a(i, j))n×n. If a(i, j) = ciaj, then

such statistic with form
∑n

i=1 ciaRi is called simple linear rank statistic, which will be our
concern in this section. Here, c and a’s are called the coefficients and scores.

Example 3.18 In two independent sample X1, ..., Xn and Y1, ..., Ym, a Wilcoxon statistic is
defined as the summation of all the ranks of the second sample in the pooled data X1, ..., Xn,
Y1, ..., Ym, i.e.,

Wn =

n+m∑

i=n+1

Ri.

This is a simple linear rank statistic with c’s are 0 and 1 for the first sample and the second
sample respectively and the vector a is (1, ..., n+m). There are other choices for rank statistics,
for instance, the van der Waerden statistic

∑n+m
i=n+1 Φ−1(Ri).

For order statistics and rank statistics, there are some useful properties.

Proposition 3.8 Let X1, ..., Xn be a random sample from continuous distribution function F
with density f . Then

1. the vectors (X(1), ..., X(n)) and (R1, ..., Rn) are independent;

2. the vector (X(1), ..., X(n)) has density n!
∏n

i=1 f(xi) on the set x1 < ... < xn;

3. the variable X(i) has density
(
n−1
i−1

)
F (x)i−1(1−F (x))n−if(x); for F the uniform distribution

on [0, 1], it has mean i/(n+ 1) and variance i(n− i+ 1)/[(n+ 1)2(n+ 2)];
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4. the vector (R1, ..., Rn) is uniformly distributed on the set of all n! permutations of
1, 2, ..., n;

5. for any statistic T and permutation r = (r1, ..., rn) of 1, 2, ..., n,

E[T (X1, ..., Xn)|(R1, .., Rn) = r] = E[T (X(r1), .., X(rn))];

6. for any simple linear rank statistic T =
∑n

i=1 ciaRi ,

E[T ] = nc̄nān, V ar(T ) =
1

n− 1

n∑

i=1

(ci − c̄n)2

n∑

i=1

(ai − ān)2.

†

The proof of Proposition 3.8 is elementary so we skip. For simple linear rank statistic, a
central limit theorem also exists:

Theorem 3.17 Let Tn =
∑n

i=1 ciaRi such that

max
i≤n
|ai − ān|/

√√√√
n∑

i=1

(ai − ān)2 → 0, max
i≤n
|ci − c̄n|/

√√√√
n∑

i=1

(ci − c̄n)2 → 0.

Then (Tn − E[Tn])/
√
V ar(Tn)→d N(0, 1) if and only if for every ε > 0,

∑

(i,j)

I

{
√
n

|ai − ān||ci − c̄n|√∑n
i=1(ai − ān)2

∑n
i=1(ci − c̄n)2

> ε

}
|ai − ān|2|ci − c̄n|2∑n

i=1(ai − ān)2
∑n

i=1(ci − c̄n)2
→ 0.

We can immediately recognize that the last condition is similar to the Lindeberg condition.
The proof can be found in Ferguson, Chapter 12.

Besides of rank statistics, there are other statistics based on ranks. For example, a simple
linear signed rank statistic has the form

n∑

i=1

aR+
i

sign(Xi),

where R+
1 , ..., R

+
n , called absolute rank, are the ranks of |X1|, ..., |Xn|. In a bivariate sample

(X1, Y1), ..., (Xn, Yn), one can define a statistic of the form

n∑

i=1

aRibSi

for two constant vector (a1, ..., an) and (b1, ..., bn), where (R1, ..., Rn) and (S1, ..., Sn) are respec-
tive ranks of (X1, ..., Xn) and (Y1, ..., Yn). Such a statistic is useful for testing independence of
X and Y . Another statistic is based on permutation test, as exemplified in Example 3.12. For
all these statistics, some conditions ensure that the central limit theorem holds.
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3.4.3 Martingales

In this section, we consider the central limit theorem for another type of the sum of non-
independent random variables. These random variables are called martingale.

Definition 3.7 Let {Yn} be a sequence of random variables and Fn be sequence of σ-fields
such that F1 ⊂ F2 ⊂ .... Suppose E[|Yn|] <∞. Then the sequence of pairs {(Yn,Fn)} is called
a martingale if

E[Yn|Fn−1] = Yn−1, a.s.

{(Yn,Fn)} is a submartingale if

E[Yn|Fn−1] ≥ Yn−1, a.s.

{(Yn,Fn)} is a supmartingale if

E[Yn|Fn−1] ≤ Yn−1, a.s.

†

The definition implies that Y1, ..., Yn are measurable in Fn. Sometimes, we say Yn is adapted
to Fn. One simple example of a martingale is Yn = X1 + ... + Xn, where X1, X2, ... are i.i.d
with mean zero, and Fn is the σ-filed generated by X1, ..., Xn. This is because

E[Yn|Fn−1] = E[X1 + ...+Xn|X1, ..., Xn−1] = Yn−1.

For Yn = X2
1 + ... + X2

n, one can verify that {(Yn,Fn)} is a submartingale. In fact, from one
submartingale, one can construct many submartingales as shown in the following lemma.

Proposition 3.9 Let {(Yn,Fn)} be a martingale. For any measurable and convex function φ,
{(φ(Yn),Fn)} is a submartingale. †

Proof Clearly, φ(Yn) is adapted to Fn. It is sufficient to show

E[φ(Yn)|Fn−1] ≥ φ(Yn−1).

This follows from the well-known Jensen’s inequality: for any convex function φ,

E[φ(Yn)|Fn−1] ≥ φ(E[Yn|Fn−1]) = φ(Yn−1).

†

Particularly, the Jensen’s inequality is given in the following lemma.

Proposition 3.10 For any random variable X and any convex measurable function φ,

E[φ(X)] ≥ φ(E[X]).

†
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Proof We first claim that for any x0, there exists a constant k0 such that for any x,

φ(x) ≥ φ(x0) + k0(x− x0).

The line φ(x0) + k0(x − x0) is called the supporting line for φ(x) at x0. By the convexity, we
have that for any x′ < y′ < x0 < y < x,

φ(x0)− φ(x′)

x0 − x′
≤ φ(y)− φ(x0)

y − x0

≤ φ(x)− φ(x0)

x− x0

.

Thus, φ(x)−φ(x0)
x−x0

is bounded and decreasing as x decreases to x0. Let the limit be k+
0 then

φ(x)− φ(x0)

x− x0
≥ k+

0 .

I.e.,
φ(x) ≥ k+

0 (x− x0) + φ(x0).

Similarly,
φ(x′)− φ(x0)

x′ − x0
≤ φ(y′)− φ(x0)

y′ − x0
≤ φ(x)− φ(x0)

x− x0
.

Then φ(x′)−φ(x0)
x′−x0

is increasing and bounded as x′ increases to x0. Let the limit be k−0 then

φ(x′) ≥ k−0 (x′ − x0) + φ(x0).

Clearly, k+
0 ≥ k−0 . Combining those two inequalities, we obtain

φ(x) ≥ φ(x0) + k0(x− x0)

for k0 = (k+
0 + k−0 )/2. We choose x0 = E[X] then

φ(X) ≥ φ(E[X]) + k0(X − E[X]).

The Jensen’s inequality holds by taking the expectation on both sides. †

If {(Yn,Fn)} is a submartingale, we can write

Yn =
n∑

j=1

(Yj − E[Yj|Fj−1])

+

n∑

j=1

E[Yj − Yj−1|Fj−1]

= Mn + An,

where F0 is the null σ-field and Y0 = EY1. Note that {Mn,Fn)} is a martingale and that
An is measurable in Fn−1. Thus any submartingale can be written as the summation of a
martingale and a random variable predictable in Fn−1. We now state the limit theorems for
the martingales.
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Theorem 3.18 (Martingale Convergence Theorem) Let {(Xn,Fn)} be submartingale. If
K = supnE[|Xn|] <∞, then Xn →a.s. X where X is a random variable satisfying E[|X|] ≤ K.
†

The proof needs the maximal inequality for a submartingale and the up-crossing inequality.

Proof We first prove the following maximal inequality: for α > 0,

P (max
i≤n

Xi ≥ α) ≤ 1

α
E[|Xn|].

To see that, we note that

P (max
i≤n

Xi ≥ α)

=
n∑

i=1

P (X1 < α, ..., Xi−1 < α,Xi ≥ α)

≤
n∑

i=1

E[I(X1 < α, ..., Xi−1 < α,Xi ≥ α)
Xi

α
]

=
1

α

n∑

i=1

E[I(X1 < α, ..., Xi−1 < α,Xi ≥ α)Xi].

Since E[Xn|X1, ..., Xn−1] ≥ Xn−1, E[Xn|X1, ..., Xn−2] ≥ E[Xn−1|X1, ..., Xn−2] and so on. We
obtain E[Xn|X1, ..., Xi] ≥ E[Xi+1|X1, ..., Xi] ≥ Xi for i = 1, ..., n− 1. Thus,

P (max
i≤n

Xi ≥ α) ≤ 1

α

n∑

i=1

E[I(X1 < α, ..., Xi−1 < α,Xi ≥ α)E[Xn|X1, ..., Xi]]

≤ 1

α
E[Xn

n∑

i=1

I(X1 < α, ..., Xi−1 < α,Xi ≥ α)] ≤ 1

α
E[Xn] ≤ 1

α
E[|Xn|].

For any interval [α, β] (α < β), we define a sequence of numbers τ1, τ2, ... as follows:
τ1 is the smallest j such that 1 ≤ j ≤ n and Xj ≤ α and is n if there is not such j;
τ2k is the smallest j such that τ2k−1 < j ≤ n and Xj ≥ β, and is n if there is not such j;
τ2k+1 is the smallest j such τ2k < j ≤ n and Xj ≤ α, and is n if there is not such j.
A random variable U , called upcrossings of [α, β] by X1, ..., Xn, is the largest i such that
Xτ2i−1

≤ α < β ≤ Xτ2i . We then show that

E[U ] ≤ E[|Xn|] + |α|
β − α .

Let Yk = max{0, Xk − α} and θ = β − α. It is easy to see Y1, ..., Yn is a submartingale. The τk
are unchanged if the definitions Xj ≤ α is replaced by Yj = 0 and Xj ≥ β by Yj ≥ θ, and so U
is also the number of upcrossings of [0, θ] by Y1, .., Yn. We also obtain

E[Yτ2k+1
− Yτ2k ] =

∑

1≤k1<k2≤n
E[(Yk2 − Yk1)I(τ2k+1 = k2, τ2k = k1)]



LARGE SAMPLE THEORY 74

=
n−1∑

k1=1

n∑

k′=2

E[I(τ2k = k1, k1 < k′ ≤ τ2k+1)(Yk′ − Yk′−1)]

=
n−1∑

k1=1

n∑

k′=2

E[I(τ2k = k1, k1 < k′)(1− I(τ2k+1 < k′))(Yk′ − Yk′−1)].

By the definition, if {τ2k−1 = i} is measurable in Fi for i = 1, ..., n, where Fi is the σ-field
generated by Y1, ..., Yi, then

{τ2k = j} = ∪j−1
i=1 {τ2k−1 = i, Yi+1 < θ, ..., Yj−1 ≤ θ, Yj ≥ θ}

belongs to the σ-field Fj and {τ2k = n} = {τ2k ≤ n− 1}c lies in Fn. Similarly, if {τ2k = i} ∈ Fi
for any i = 1, ..., n, so is {τ2k+1 = i} ∈ Fi for any i = 1, ..., n. Thus, by the deduction, we
obtain that for any i = 1, ..., n, {τk = i} is in Fi. Then,

E[I(τ2k = k1, k1 < k′)(1− I(τ2k+1 < k′))(Yk′ − Yk′−1)]

= E[I(τ2k = k1, k1 < k′)(1− I(τ2k+1 < k′))(E[Yk′|Fk′−1]− Yk′−1)] ≥ 0.

We conclude that E[Yτ2k+1
− Yτ2k ] ≥ 0.

Since τk is strictly increasing and τn = n,

Yn = Yτn ≥ Yτn − Yτ1 =
n∑

k=2

(Yτk − Yτk−1
) =

∑

2≤k≤n,k even

(Yτk − Yτk−1
) +

∑

2≤k≤n,k odd

(Yτk − Yτk−1
).

When k is even, Yτk − Yτk−1 ≥ θ and the total number of such k is U . The expectation of the
second half is non-negative. We obtain

E[Yn] ≥ θE[U ].

Thus,

E[U ] ≤ θ

E
[Yn] ≤ E[|X|+ |α|

β − α .

With the maximal inequality, we can start to prove the martingale convergence theorem.
Let Un be the number of upcrossings of [α, β] by X1, ..., Xn. Then

E[Un] ≤ K + |α|
β − α .

Let X∗ = lim supnXn and X∗ = lim infnXn. If X∗ < α < β < X∗, then Un must go to infinity.
Since Un is bounded with probability 1, P (X∗ < α < β < X∗) = 0. Now

{X∗ < X∗} = ∪α<β,α,β are rational numbers{X∗ < α < β < X∗}.

We obtain P (X∗ = X∗) = 1. That is, Xn converges to their common values X. By the Fatou’s
lemma, E[|X|] ≤ lim infnE[|Xn|] ≤ K. X is integrable and finite with probability 1. † .

As a corollary of the martingale convergence theorem, we obtain



LARGE SAMPLE THEORY 75

Corollary 3.1 If Fn is increasing σ-field and denote F∞ as the σ-field generated by ∪∞n=1Fn,
then for any random variable Z with E[|Z|] <∞, it holds

E[Z|Fn]→a.s. E[Z|F∞].

†

Proof Denote Yn = E[Zn|Fn]. Clearly, Yn is a martingale adapted to Fn. Moreover, E[|Yn|] ≤
E[|Z|]. By the martingale convergence theorem, Yn converges to some random variable Y almost
surely. Clearly, Y is measurable in F∞. We then show Yn is uniformly integrable. Since
Yn ≤ E[|Zn||Fn], we may assume Z is non-negative. For any ε > 0, there exists a δ such
that E[ZIA] < ε whenever P (A) < δ (since the measure E[ZIA] is absolutely continuous with
respect to the measure P ). Note that for a large α, consider the set A = {P (E[Z|Fn] ≥ α)}.
Since

P (A) = E[I(E[Z|Fn] ≥ α)] ≤ 1

α
E[Z],

we can choose α large enough (independent of n) such that P (A) < δ. Thus, E[ZI(E[Z|Fn] ≥
α)] < ε for any n. We conclude E[Z|Fn] is uniformly integrable. With the uniform integrability,
we have that for any A ∈ Fk, limn

∫
A
YndP =

∫
A
Y dP. Note that

∫
A
YndP =

∫
A
ZdP for n > k.

Thus,
∫
A
Y dP =

∫
A
ZdP =

∫
A
E[Z|F∞]dP . This is true for any A ∈ ∪∞n=1F∞ so it is also true

for any A ∈ F∞. Since Y is measurable in F∞, Y = E[Z|F∞], a.s. †

Finally, a similar theorem to the Lindeberg-Feller central limit theorem also exists for the
martingales.

Theorem 3.19 (Martingale Central Limit Theorem) Let (Yn1,Fn1), (Yn2,Fn2), ... be a
martingale. Define Xnk = Ynk − Yn,k−1 with Yn0 = 0 thus Ynk = Xn1 + ...+Xnk. Suppose that

∑

k

E[X2
nk|Fn,k−1]→p σ

2

where σ is a positive constant and that

∑

k

E[X2
nkI(|Xnk| ≥ ε)|Fn,k−1]→p 0

for each ε > 0. Then ∑

k

Xnk →d N(0, σ2).

†

The proof is based on the approximation of the characteristic function and we skip the
details here.
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3.5 Some Notation

In a probability space (Ω,A, P ), let {Xn} be random variables (random vectors). We introduce
the following notation: Xn = op(1) denotes thatXn converges in probability to zero, Xn = Op(1)
denotes that Xn is bounded in probability; i.e.,

lim
M→∞

lim sup
n

P (|Xn| ≥M) = 0.

It is easy to see Xn = Op(1) is equivalent to saying Xn is uniformly tight. Furthermore, for
a sequence of random variable {rn}, Xn = op(rn) means that |Xn|/rn →p 0 and Xn = Op(rn)
means that |Xn|/rn is bounded in probability.

There are many rules of calculus with o and O symbols. For instance, some commonly used
formulae are (Rn is a deterministic sequence)

op(1) + op(1) = op(1), Op(1) +Op(1) = Op(1), Op(1)op(1) = op(1),

(1 + op(1))−1 = 1 + op(1), op(Rn) = Rnop(1), Op(Rn) = RnOp(1),

op(Op(1)) = op(1).

Furthermore, if a real function R(·) satisfies that R(h) = o(|h|p) as h → 0, then R(Xn) =
op(|Xn|p); if R(h) = O(|h|p) as h → 0, then R(Xn) = Op(|Xn|p). Readers should be able to
prove these results without difficulty.

READING MATERIALS : You should read Lehmann and Casella, Section 1.8, Ferguson, Part
1, Part 2, Part 3 12-15

PROBLEMS

1. (a) If X1, X2, ... are i.i.d N(0, 1), then X(n)/
√

2 logn →p 1 where X(n) is the maximum
of X1, ..., Xn. Hint: use the following inequality: for any δ > 0,

δ√
2π
e−(1+δ)y2/2y ≤

∫ ∞

y

1√
2π
e−x

2/2dx ≤ e−y
2(1−δ)/2
√
δ

.

(b) If X1, X2, ... are i.i.d Uniform(0, 1), derive the limit distribution of n(1−X(n)).

2. Suppose that U ∼ Uniform(0, 1), α > 0, and

Xn = (nα/ log(n+ 1))I[0,n−α](U).

(a) Show that Xn →a.s. 0 and E[Xn]→ 0.

(b) Can you find a random variable Y with |Xn| ≤ Y for all n with E[Y ] <∞?
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(c) For what values of α does the uniform integrability condition

lim sup
n→∞

E[|Xn|I|Xn|≥M ]→ 0, as M →∞

hold?

3. (a) Show by example that distribution functions having densities can converge in distri-
bution even if the densities do not converge. Hint: Consider fn(x) = 1 + cos 2πnx
in [0, 1].

(b) Show by example that distributions with densities can converge in distribution to a
limit that has no density.

(c) Show by example that discrete distributions can converge in distribution to a limit
that has a density.

4. Stirling’s formula. Let Sn = X1 + ...+Xn, where the X1, ..., Xn are independent and each
has the Poisson distribution with parameters 1. Calculate or prove successively:

(a) Calculate the expectation of {(Sn − n)/
√
n}−, the negative part of (Sn − n)/

√
n.

(b) Show {(Sn − n)/
√
n}− →d Z

−, where Z has a standard normal distribution.

(c) Show

E

[{
Sn − n√

n

}−]
→ E[Z−].

(d) Use the above results to derive the Stirling’s formula:

n! ∼
√

2πnn+1/2e−n.

5. This problem gives an alternative way of proving the Slutsky theorem. Let Xn →d X
and Yn →p y for some constant y. Assume Xn and Yn are both measurable functions
on the same probability measure space (Ω,A, P ). Then (Xn, Yn)′ can be considered as a
bivariate random variable into R2.

(a) Show (Xn, Yn)′ →d (X, y)′. Hint: show the characteristic function of (Xn, Yn)′ con-
verges using the dominated convergence theorem.

(b) Use the continuous mapping theorem to prove the Slutsky theorem. Hint: first show
ZnXn →d zX using the function g(x, z) = xz; then show ZnXn + Yn →d zX + y
using the function g̃(x, y) = x + y.

6. Suppose that {Xn} is a sequence of random variables in a probability measure space.
Show that, if E[g(Xn)] → E[g(X)] for all continuous g with bounded support (that is,
g(x) is zero when x is outside a bounded interval), then Xn →d X. Hint: verify (c) of the
Portmanteau Theorem. Follow the proof for (c) by considering g(x) = 1− ε/[ε+d(x,Gc∪
(−M,M)c)] for any M .

7. Suppose thatX1, ..., Xn are i.i.d with distribution functionG(x). LetMn = max{X1, .., Xn}.

(a) If G(x) = (1− exp{−αx})I(x > 0), what is the limit distribution of Mn−α−1 log n?
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(b) If

G(x) =

{
0 if x ≤ 1,
1− x−α if x ≥ 1,

where α > 0, what is the limit distribution of n−1/αMn?

(c) If

G(x) =





0 if x ≤ 0,
1− (1− x)α if 0 ≤ x ≤ 1,
1 if x ≥ 1,

where α > 0, what is the limit distribution of n1/α(Mn − 1)?

8. (a) Suppose that X1, X2, ... are i.i.d in R2 with distribution giving probability θ1 to (1, 0),
probability θ2 to (0, 1), θ3 to (0, 0) and θ4 to (−1,−1) where θj ≥ 0 for j = 1, 2, 3, 4
and θ1 + ...+ θ4 = 1. Find the limiting distribution of

√
n(X̄n−E[X1]) and describe

the resulting approximation to the distribution of X̄n.

(b) Suppose that X1, ..., Xn is a sample from the Poisson distribution with parameter
λ > 0: P (X1 = k) = exp{−λ}λk/k!, k = 0, 1, ... Let Zn = [

∑n
i=1 I(Xi = 1)]/n.

What is the joint asymptotic distribution of
√
n((X̄n, Zn)′− (λ, λe−λ))? Let p1(λ) =

P (X1 = 1). What is the asymptotic distribution of p̂1 = p1(X̄n)? What is the joint
asymptotic distribution of (Zn, p̂1) (after centering and rescaling)?

(c) If Xn possesses a t-distribution with n degrees of freedom, then Xn →d N(0, 1) as
n→∞. Show this.

9. Suppose that Xn converges in distribution to X. Let φn(t) and φ(t) be the characteristic
functions of Xn and X respectively. We know that φn(t)→ φ(t) for each t. The following
procedure shows that if supnE[|Xn|] < C0 for some constant C0, the convergence point-
wise of the characteristic functions can be strengthened to the convergence uniformly in
any bounded interval,

sup
|t|<M

|φn(t)− φ(t)| → 0

for any constant M . Verify each of the following steps.

(a) Show that E[|Xn|] =
∫∞

0
P (|Xn| ≥ t)dt and E[|X|] =

∫∞
0
P (|X| ≥ t)dt. Hint: write

P (|Xn| ≥ t) = E[I(|Xn| ≥ t)] then apply the Fubini-Tonelli theorem.

(b) Show that P (|Xn| ≥ t) → P (|X| ≥ t) almost everywhere (with respect to the
Lebsgue measure). Then apply the Fatou’s lemma to show that E[|X|] ≤ C0.

(c) Show that both φn(t) and φ(t) satisfy: for any t1, t2,

|φn(t1)− φn(t2)| ≤ C0|t1 − t2|,
|φ(t1)− φ(t2)| ≤ C0|t1 − t2|.

That is, φn and φ are uniformly continuous.

(d) Show that supt∈[−M,M ] |φn(t)− φ(t)| → 0. Hint: first partition [−M,M ] into equally
spaced −M = t0 < t1 < ... < tm = M ; then for t in one of these intervals, say
[tk, tk+1], use the inequality

|φn(t)− φ(t)| ≤ |φn(t)− φn(tk)|+ |φn(tk)− φ(tk)|+ |φ(tk)− φ(t)|.
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10. Suppose that X1, ..., Xn are i.i.d from the uniform distribution in [0, 1]. Derive the asymp-

totic distribution of Gini’s mean difference, which is defined as
(
n
2

)−1∑∑
i<j |Xi −Xj|.

11. Suppose that (X1, Y1), ..., (Xn, Yn) are i.i.d from a bivariate distribution with bounded

fourth moments. Derive the limit distribution of U =
(
n
2

)−1∑∑
i<j(Yj − Yi)(Xj − Xi).

Write the expression in terms of the moments of (X1, Y1).

12. Let Y1, Y2, ... be independent random variables with mean 0 and variance σ2. Let Xn =
(
∑n

k=1 Yk)
2 − nσ2 and show that {Xn} is a martingale.

13. Suppose that X1, ..., Xn are independent N(0, 1) random variables, and let Yi = X2
i for

i = 1, ..., n. Thus
∑n

i=1 Y
2
i ∼ χ2

n.

(a) Show that
√
n(Ȳn − 1)→d N(0, σ2) and find σ2.

(b) Show that for each r > 0,
√
n(Ȳ r

n − 1)→d N(0, V (r)2) and find V (r)2 as a function
of r.

(c) Show that √
n{Ȳ 1/3

n − (1− 2/(9n))}√
2/9

→d N(0, 1).

Does this agree with your result in (b).

(d) Make normal probability plots to compare the approximations in (a) and (c) (the
transformation in (c) is called the “Wilson-Hilferty” transformation of a χ2-random
variable.

14. Suppose that X1, X2, ... are i.i.d positive random variables, and define X̄n =
∑n

i=1 Xi/n,

Hn = 1/ {n−1
∑n

i=1(1/Xi)}, and Gn = {∏n
i=1 Xi}1/n

to be the arithmetic, harmonic and
geometric means respectively. We know that X̄n →a.s. E[X1] = µ if and only if E[|Xi|] is
finite.

(a) Use the strong law of large numbers together with appropriate additional hypotheses
to show that Hn →a.s. 1/ {E[1/X1]} ≡ h and Gn →a.s. exp{E[logX1]} ≡ g.

(b) Find the joint limiting distribution of
√
n(X̄n − µ,Hn − h,Gn − g). You will need

to impose or assume additional moment conditions to be able to prove this. Specify
these additional assumptions carefully.

(c) Suppose that Xi ∼ Gamma(r, λ) with r > 0. Find what values of r are the hypothe-
ses you impose in (c) satisfied? Compute the covariance of the limiting distribution
in (c) as explicitly as you can in this case.

(d) Show that
√
n(Gn/X̄n − g/µ) →d N(0, V 2). Compute V explicitly when Xi ∼

Gamma(r, λ) with r satisfying the conditions you found in (d).

15. Suppose that (N11, N12, N21, N22) has multinomial distribution with (n, p) where p =
(p11, p12, p21, p22) and

∑2
i=1

∑2
j=1 pij = 1. Thus, N ’s can be treated as counts in a 2×

table. The log-odds ratio is defined by

ψ = log
p12p21

p11p22

.



LARGE SAMPLE THEORY 80

(a) Suggest an estimator of ψ, say ψ̂n.

(b) Show that the estimator you proposed in (a) is asymptotically normal and compute
the asymptotic variance of your estimator. Hint: The vectors of N ’s is the sum of n
independent Multinomial(1, p) random vectors {Yi, i = 1, ..., n}.

16. Suppose that Xi ∼ Bernoulli(pi), i = 1, .., n are independent. Show that if

n∑

i=1

pi(1− pi)→∞,

then √
n(X̄n − p̄n)√

n−1
∑n

i=1 pi(1− pi)
→d N(0, 1).

Give one example {pi} for which the above convergence in distribution holds and another
example for which it fails.

17. Suppose thatX1, ..., Xn are independent with common mean µ but with variances σ2
1, ..., σ

2
n

respectively.

(a) Show that X̄n →p µ if
∑n

i=1 σ
2
i = o(n2).

(b) Now suppose that Xi = µ + σiεi where ε1, ..., εn are i.i.d with distribution function
F with E[ε1] = 0 and var(ε1) = 1. Show that if

max
i≤n

σ2
i /

n∑

i=1

σ2
i → 0

then with σ̄2
n = n−1

∑n
i=1 σ

2
i ,

√
n(X̄n − µ)

σ̄n
→d N(0, 1).

Hence show that if furthermore σ̄2 → σ2
0, then

√
n(X̄n − µ)→d N(0, σ2

0).

(c) If σ2
i = Air for some constant A, show that maxi≤n σ2

i /
∑n

i=1 σ
2
i → 0 but σ̄2

n has not
limit. In this case, n(1−r)/2(X̄n − µ) = Op(1).

18. Suppose thatX1, ..., Xn are independent with common mean µ but with variances σ2
1, ..., σ

2
n

respectively, the same as the previous question. Consider the estimator of µ: Tn =∑n
i=1 ωniXi, where ω = (ωn1, ..., ωnn)) is a vector of weights with

∑n
i=1 ωni = 1.

(a) Show that all the estimators Tn have the mean µ and the choice of weights minimizing
var(Tn) is

ωoptni =
1/σ2

i∑n
j=1(1/σ2

j )
, i = 1, ..., n.

(b) Compute var(Tn) when ω = ωopt and show Tn →p µ if
∑n

i=1(1/σ2
i )→∞.
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(c) Suppose Xi = µ + σiεi where ε1, ..., εn are i.i.d with distribution function F with
E[ε1] = 0 and var(ε1) = 1. Show that

√√√√
n∑

i=1

(1/σ2
i )(Tn − µ)→d N(0, 1)

if maxi≤n(1/σ2
i )/
∑n

j=1(1/σ
2
j )→ 0, where ω chosen as ωopt.

(d) Compute var(Tn)/var(X̄n) when ω = ωopt in the case σ2
i = Ari for r = 0.25, 0.5, 0.75

and n = 5, 10, 20, 50, 100,∞.

19. Ferguson, page 6 and page 7, problems 1-7

20. Ferguson, page 11 and page 12, problems 1-8

21. Ferguson, page 18, problems 1-5

22. Ferguson, page 23, page 24 and page 25, problems 1-8

23. Ferguson, page 34 and page 35, problems 1-10

24. Ferguson, page 42 and page 43, problems 1-6

25. Ferguson, page 49 and page 50, problems 1-6

26. Ferguson, page 54 and page 55, problems 1-4

27. Ferguson, page 60, problems 1-4

28. Ferguson, page 65 and page 66, problems 1-3

29. Read Ferguson, pages 87-92 and do problems 3-6

30. Ferguson, page 100, problems 1-2

31. Lehmann and Casella, page 75, problems 8.2, 8.3

32. Lehmann and Casella, page 76, problems 8.8, 8.10, 8.11, 8.12, 8.14, 8.15, 8.16, 8.17 8.18

33. Lehmann and Casella, page 77, problems 8.19, 8.20, 8.21, 8.22, 8.23, 8.24, 8.25, 8.26
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CHAPTER 4 POINT ESTIMATION AND EFFICIENCY

The objective of science is to make general conclusions based on observed empirical data or
phenomenon. The differences among different scientific areas are scientific tools implemented
and scientific approaches to derive the decisions. However, they follow a similar procedure as
follows:
(A) a class of mathematical models is proposed to model scientific phenomena or processes;
(B) an estimated model is derived using the empirical data;
(C) the obtained model is validated using more and new observations; if wrong, go back to (A).
Usually, in (A), the class of mathematical models is proposed based on either past experience
or some physical laws. (B) is the step where all different scientific tools can play by using math-
ematical methods to determine the model. (C) is the step of model validation. Undoubtedly
eac step is important.

In statistical science, (A) corresponds to proposing a class of distribution functions, denoted
by P, to describe the probabilistic mechanisms of data generation. (B) consists of all kinds of
statistical methods to decide which distribution in the class of (A) fits the data best. (C) is
how one can validate or test the goodness of the distribution obtained in (B). Our goal of this
course is mainly on (B), which is called statistical inference step.

One good estimation approach should be able to estimate model parameters with reasonable
accuracy. Such accuracy is characterized by either unbiasedness in finite sample performance or
consistency in large sample performance. Furthermore, by accounting for randomness in data
generation, we also want the estimation to be somewhat robust to intrinsic random mechanism.
This robustness is characterized by the variance of the estimates. Thus, an ideally best estimator
should have no bias and have the smallest variance in any finite sample. Unfortunately, although
such estimators may exist for some models, most of models do not. One compromise is to seek
an estimator which has no bias and has the smallest variance in large sample, i.e., an estimate
which is asymptotically unbiased and efficient. Fortunately, such an estimator exists for most
of models.

In this chapter, we review some commonly-used estimation approaches, with particular
attention to the estimation providing the unbiased and smallest variance estimators if they exist.
The smallest variance for finite sample is characterized by the Cramér-Rao bound (efficiency
bound in finite sample). Such a bound also turns out to be the efficiency bound in large sample,
where we show that the asymptotic variance of any regular estimators in regular models can
not be smaller than this bound.

4.1 Introductory Examples

A model P is a collection of probability distributions for the data we observe. Parameters of
interest are simply some functionals on P, denoted by ν(P ) for P ∈ P.

Example 4.1 Suppose X is a non-negative random variable.
Case A. Suppose that X ∼ Exponential(θ), θ > 0; thus pθ(x) = θe−θxI(x ≥ 0). P consists of
distribution function which are indexed by a finite-dimensional parameter θ. P is a parametric
model. ν(pθ) = θ is parameter of interest.
Case B. Suppose P consists of the distribution functions with density pλ,G =

∫∞
0
λ exp{−λx}dG(λ),

where λ ∈ R and G is any distribution function. Then P consists of the distribution functions
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which are indexed by both real parameter λ and functional parameter G. P is a semiparametric
model. ν(pλ,G) = λ or G or both can be parameters of interest.
Case C. P consists of all distribution functions in [0,∞). P is a nonparametric model.
ν(P ) =

∫
xdP (x), the mean of the distribution function, can be parameter of interest.

Example 4.2 Suppose that X = (Y, Z) is a random vector on R+ ×Rd.
Case A. Suppose X ∼ Pθ with Y |Z = z ∼ exponential(λeθ

′z) for y ≥ 0. This is a parametric
model with parameter space Θ = R+ × Rd.
Case B. Suppose X ∼ Pθ,λ with Y |Z = z ∼ λ(y)eθ

′z exp{−Λ(y)eθ
′z} where Λ(y) =

∫ y
0
λ(y)dy.

This is a semiparametric model, the Cox proportional hazards model for survival analysis, with
parameter space (θ, λ) ∈ R× {λ(y) : λ(y) ≥ 0,

∫∞
0
λ(y)dy =∞}.

Case C. Suppose X ∼ P on R+×Rd where P is completely arbitrary. This is a nonparametric
model.

Example 4.3 Suppose X = (Y, Z) is a random vector in R ×Rd.
Case A. Suppose that X = (Y, Z) ∼ Pθ with Y = θ′Z + ε where θ ∈ Rd and ε ∼ N(0, σ2). This
is a parametric model with parameter space (θ, σ) ∈ Rd ×R+.
Case B. Suppose X = (Y, Z) ∼ Pθ with Y = θ′Z + ε where θ ∈ Rd and ε ∼ G with density g is
independent of Z. This is a semiparametric model with parameters (θ, g).
Case C. Suppose X = (Y, Z) ∼ P where P is an arbitrary probability distribution on R× Rd.
This is a nonparametric model.

For a given data, there are many reasonable models which can be used to describe data. A
good model is usually preferred if it is compatible with underlying mechanism of data genera-
tion, has as few model assumption as possible, can be presented in simple ways, and inference
is feasible. In other words, a good model should make sense, be flexible and parsimonious, and
be easy for inference.

4.2 Methods of Point Estimation: A Review

There have been a number of estimation methods proposed for many statistical models. How-
ever, some methods may work well from some statistical models but may not work well for
others. In the following sections, we list a few of these methods, along with examples.

4.2.1 Least square estimation

The least square estimation is the most classical estimation method. This method estimates
the parameters by minimizing the summed square distance between the observed quantities
and the expected quantities.

Example 4.4 Suppose n i.i.d observations (Yi, Zi), i = 1, ..., n, are generated from the distri-
bution in Example 4.3. To estimate θ, one method is to minimize the least square function

n∑

i=1

(Yi − θ′Zi)2.
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This gives the least square estimate for θ as

θ̂ = (

n∑

i=1

ZiZ
′
i)
−1(

n∑

i=1

ZiYi).

It can show that E[θ̂] = θ. Note that this estimation does not use any distribution function in
ε so applies to all three cases.

4.2.2 Uniformly minimal variance and unbiased estimation

Sometimes, one seeks an estimate which is unbiased for parameters of interest. Furthermore,
one wants such an estimate to have the least variation. If such an estimator exists, we call it
the uniformly minimal variance and unbiased estimator (UMVUE) (an estimator T is unbiased
for the parameter θ if E[T ] = θ). It should be noted that such an estimator may not exist.

The UMVUE often exists for distributions in the exponential family, whose probability
density functions are of form

pθ(x) = h(x)c(θ) exp{η1(θ)T1(x) + ...ηs(θ)Ts(x)},

where θ ∈ Rd and T (x) = (T1(x), ..., Ts(x)) is the s-dimensional statistics. The following lemma
describes how one can find a UMVUE for θ from an unbiased estimator.

Definition 4.1 T (X) is called a sufficient statistic forX ∼ pθ with respect to θ if the conditional
distribution of X given T (X) is independent of θ. T (X) is a complete statistic with respect to
θ if for any measurable function g, Eθ[g(T (X))] = 0 for any θ implies g = 0, where Eθ denotes
the expectation under the density function with parameter θ. †

It is easy to check that T (X) is sufficient if and only if pθ(x) can be factorized into
gθ(T (x))h(x). Thus, in the exponential family, T (X) = (T1(X), ..., Ts(X)) is sufficient. Ad-
ditionally, if the exponential family is of full-rank (i.e., {(η1(θ), ..., ηs(θ)) : θ ∈ Θ} contains a
cube in s-dimensional space), T (X) is also a complete statistic. The proof can be referred to
Theorem 6.22 in Lehmann and Casella (1998).

Proposition 4.1 Suppose θ̂(X) is an unbiased estimator for θ; i.e., E[θ̂(X)] = θ. If T (X) is a
sufficient statistics of X, then E[θ̂(X)|T (X)] is unbiased and moreover,

V ar(E[θ̂(X)|T (X)]) ≤ V ar(θ̂(X)),

with the equality if and only if with probability 1, θ̂(X) = E[θ̂(X)|T (X)]. †

Proof E[θ̂(X)|T ] is clearly unbiased and moreover, by the Jensen’s inequality,

V ar(E[θ̂(X)|T ]) = E[(E[θ̂(X)|T ])2]− E[θ̂(X)]2 ≤ E[θ̂(X)2]− θ2 = V ar(θ̂(X)).

The equality holds if and only if E[θ̂(X)|T ] = θ̂(X) with probability 1. †

Proposition 4.2 If T (X) is complete sufficient and θ̂(X) is unbiased, then E[θ̂(X)|T (X)] is
the unique UMVUE for θ. †
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Proof For any unbiased estimator for θ, denoted by T̃ (X), we obtain from Proposition 4.1 that
E[T̃ (X)|T (X)] is unbiased and

V ar(E[T̃ (X)|T (X)]) ≤ V ar(T̃ (X)).

Since E[E[T̃ (X)|T (X)]− E[θ̂(X)|T (X)]] = 0 and E[T̃ (X)|T (X)] and E[θ̂(X)|T (X)] are inde-
pendent of θ, the completeness of T (X) gives that

E[T̃ (X)|T (X)] = E[θ̂(X)|T (X)].

That is, V ar(E[θ̂(X)|T (X)]) ≤ V ar(T̃ (X)). Thus, E[θ̂(X)|T (X)] is the UMVUE. The above
arguments also show that such a UMVUE is unique. †

Proposition 4.2 suggests two ways to derive the UMVUE in the presence of a complete
sufficient statistic T (X): one way is to find an unbiased estimator of θ then calculate the
conditional expectation of this unbiased estimator given T (X); another way is to directly find
a function g(T (X)) such that E[g(T (X))] = θ. The following example describes these two
methods.

Example 4.5 Suppose X1, ..., Xn are i.i.d according to the uniform distribution U(0, θ) and we
wish to obtain a UMVUE of θ/2. From the joint density of X1, ..., Xn given by

1

θn
I(X(n) < θ)I(X(1) > 0),

one can easily show X(n) is complete and sufficient for θ. Note E[X1] = θ/2. Thus, a UMVUE
for θ/2 is given by

E[X1|X(n)] =
n+ 1

n

X(n)

2
.

The other way is to directly find a function g(X(n)) = θ/2 by noting

E[g(X(n))] =
1

θn

∫ θ

0

g(x)nxn−1dx = θ/2.

Thus, we have ∫ θ

0

g(x)xn−1dx =
θn+1

2n
.

We differentiate both sides with respect to θ and obtain g(x) = n+1
n

x
2
. Hence, we again obtain

the UMVUE for θ/2 is equal to (n+ 1)X(n)/2n.
Many more examples of the UMVUE can be found in Chapter 2 of Lehmann and Casella

(1998).

4.2.3 Robust estimation

In some regression problems, one may be concerned about outliers. For example, in a simple
linear regression, an extreme outlier may affect the fitted line greatly. One estimation approach
called robust estimation approach is to propose an estimator which is little influenced by extreme
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observations. Often, for n i.i.d observations X1, ..., Xn, the robust estimation approach is to
minimize an objective function with the form

∑n
i=1 φ(Xi; θ).

Example 4.6 In linear regression, a model for (Y,X) is given by

Y = θ′X + ε,

where ε has mean zero. One robust estimator is to minimize

n∑

i=1

|Yi − θ′Xi|

and the obtained estimator is called the least absolute deviation estimator. A more general
objective function is to minimize

n∑

i=1

φ(Yi − θ′Xi),

where φ(x) = |x|k, |x| ≤ C and φ(x) = Ck when |x| > C.

4.2.4 Estimating functions

In recent statistical inference, more and more estimators are based on estimating functions. The
use of estimating functions has been extensively seen in semiparametric model. An estimating
function for θ is a measurable function f(X; θ) with E[f(X; θ)] = 0 or approximating zero.
Then an estimator for θ using n i.i.d observations can be constructed by solving the estimating
equation

n∑

i=1

f(Xi; θ) = 0.

The estimating function is useful, especially when there are other parameters in the model but
only θ is parameters of interest.

Example 4.7 We still consider the linear regression example. We can see that for any function
W (X), E[XW (X)(Y − θ′X)] = 0. Thus an estimating equation for θ can be constructed as

n∑

i=1

XiW (Xi)(Yi − θ′Xi) = 0.

Example 4.8 Still in the regression example but we now assume the median of ε is zero. It
is easy to see that E[XW (X)sgn(Y − θ′X)] = 0. Then an estimating equation for θ can be
constructed as

n∑

i=1

XiW (Xi)sgn(Yi − θ′Xi) = 0.
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4.2.5 Maximum likelihood estimation

The most commonly used method, at least in parametric models, is the maximum likelihood
estimation method: If n i.i.d observations X1, ..., Xn are generated from a distribution function
with densities pθ(x), then it is reasonable to believe that the best value for θ should be the one
maximizing the observed likelihood function, which is defined as

Ln(θ) =

n∏

i=1

pθ(Xi).

The obtained estimator θ̂ is called the maximum likelihood estimator for θ. Many nice properties
are possessed by the maximum likelihood estimators and we will particularly investigate this
issue in next chapter. Recent development has also seen the implementation of the maximum
likelihood estimation in semiparametric models and nonparametric models.

Example 4.9 Suppose X1, ..., Xn are i.i.d. observations from exp(θ). Then the likelihood
function for θ is equal to

Ln(θ) = θn exp{−θ(X1 + ...+Xn)}.

The maximum likelihood estimator for θ is given by θ̂ = X̄n.

Example 4.10 The setting is Case B of Example 1.2. Suppose (Y1, Z1), ..., (Yn, Zn) are i.i.d
with the density function λ(y)eθ

′z exp{−Λ(y)eθ
′z}g(z), where g(z) is the known density function

of Z = z. Then the likelihood function for the parameters (θ, λ) is given by

Ln(θ, λ) =

n∏

i=1

{
λ(Yi)e

θ′Zi exp{−Λ(Yi)e
θ′Zi}g(Zi)

}
.

It turns out that the maximum likelihood estimators for (θ, λ) do not exist. One way is to let Λ
be a step function with jumps at Y1, ..., Yn and let λ(Yi) be the jump size, denoted as pi. Then
the likelihood function becomes

Ln(θ, p1, ..., pn) =

n∏

i=1



pie

θ′Zi exp{−
∑

Yj≤Yi
pje

θ′Zi}g(Zi)



 .

The maximum likelihood estimators for (θ, p1, ..., pn) are given as: θ̂ solves the equation

n∑

i=1

Zi

[
1−

∑
Yj≥Yi Zje

θ′Zj

∑
Yj≥Yi e

θ′Zj

]
= 0

and

pi =
1∑

Yj≥Yi e
θ′Zj

.
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4.2.6 Bayesian estimation

In this estimation approach, the parameter θ in the model distributions {pθ(x)} is treated as
a random variable with some prior distribution π(θ). The estimator for θ is defined as a value
depending on the data and minimizing the expected loss function or the maximal loss function,
where the loss function is denoted as l(θ, θ̂(X)). The usual loss function includes the quadratic
loss (θ− θ̂(X))2, the absolute loss |θ− θ̂(X)| etc. It often turns out that θ̂(X) can be determined
from the posterior distribution of P (θ|X) = P (X|θ)P (θ)/P (X).

Example 4.11 Suppose X ∼ N(θ, 1), where θ has an improper prior distribution of being
uniform in (−∞,∞). It is clear that the estimator θ̂(X), minimizing the quadratic loss E[(θ−
θ̂(X))2], is the posterior mean E[θ|X] = X.

4.2.7 Concluding remarks

We have reviewed a few methods which are seen in many statistical problems. However we have
not exhausted all estimation approaches. Other estimation methods include the conditional
likelihood estimation, the profile likelihood estimation, the partial likelihood estimation, the
empirical Bayesian estimation, the minimax estimation, the rank estimation, L-estimation and
etc.

With a number of estimators, one natural question is to decide which estimator is the best
choice. The first criteria is that the estimator must be unbiased or at least consistent with the
true parameter. Such a property is called the first order efficiency. In order to make a precise
estimation, we may also want the estimator to have as small variance as possible. The issue
then becomes the second order efficiency, which we will discuss in the next section.

4.3 Cramér-Rao Bounds for Parametric Models

4.3.1 Information bound in one-dimensional model

First, we assume the model is one-dimensional parametric model P = {Pθ : θ ∈ Θ} with Θ ⊂ R.
We assume:
A. X ∼ Pθ on (Ω,A) with θ ∈ Θ.
B. pθ = dPθ/dµ exists where µ is a σ-finite dominating measure.
C. T (X) ≡ T estimates q(θ) has Eθ[|T (X)|] <∞; set b(θ) = Eθ[T ]− q(θ).
D. q′(θ) ≡ q̇(θ) exists.

Theorem 4.1 (Information bound or Cramér-Rao Inequality) Suppose:
(C1) Θ is an open subset of the real line.
(C2) There exists a set B with µ(B) = 0 such that for x ∈ Bc, ∂pθ(x)/∂θ exists for all θ.
Moreover, A = {x : pθ(x) = 0} does not depend on θ.
(C3) I(θ) = Eθ[l̇θ(X)2] > 0 where l̇θ(x) = ∂ log pθ(x)/∂θ. Here, I(θ) is the called the Fisher
information for θ and l̇θ is called the score function for θ.
(C4)

∫
pθ(x)dµ(x) and

∫
T (x)pθ(x)dµ(x) can both be differentiated with respect to θ under the

integral sign.
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(C5)
∫
pθ(x)dµ(x) can be differentiated twice under the integral sign.

If (C1)-(C4) hold, then

V arθ(T (X)) ≥ {q̇(θ) + ḃ(θ)}2

I(θ)
,

and the lower bound is equal to q̇(θ)2/I(θ) if T is unbiased. Equality holds for all θ if and only
if for some function A(θ), we have

l̇θ(x) = A(θ){T (x)− Eθ[T (X)]}, a.e.µ.

If, in addition, (C5) holds, then

I(θ) = −Eθ
{
∂2

∂θ2
log pθ(X)

}
= −Eθ[l̈θ(X)].

†

Proof Note

q(θ) + b(θ) =

∫
T (x)pθ(x)dµ(x) =

∫

Ac∩Bc
T (x)pθ(x)dµ(x).

Thus from (C2) can (C4),

q̇(θ) + ḃ(θ) =

∫

Ac∩Bc
T (x)l̇θ(x)pθ(x)dµ(x) = Eθ[T (X)l̇θ(X)].

On the other hand, since
∫
Ac∩Bc pθ(x)dµ(x) = 1,

0 =

∫

Ac∩Bc
l̇θ(x)pθ(x)dµ(x) = Eθ[l̇θ(X)].

Then
q̇(θ) + ḃ(θ) = Cov(T (X), l̇θ(X)).

By the Cauchy-Schwartz inequality, we obtain

|q̇(θ) + ḃ(θ)| ≤ V ar(T (X))V ar(l̇θ(X)).

The equality holds if and only if

l̇θ(X) = A(θ) {T (X)− Eθ[T (X)]} , a.s.

Finally, if (C5) holds, we further differentiate

0 =

∫
l̇θ(x)pθ(x)dµ(x)

and obtain

0 =

∫
l̈θ(x)pθ(x)dµ(x) +

∫
l̇θ(x)2pθ(x)dµ(x).

Thus, we obtain the equality I(θ) = −Eθ[l̈θ(X)]. †
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Theorem 4.1 implies that the variance of any unbiased estimator has a lower bound q̇(θ)2/I(θ),
which is intrinsic to the parametric model. Especially, if q(θ) = θ, then the lower bound for the
variance of unbiased estimator for θ is the inverse of the information. The following examples
calculate this bound for some parametric models.

Example 4.12 Suppose X1, ..., Xn are i.i.d Poisson(θ). The density function for (X1, ..., Xn)
is given by

pθ(X1, ..., Xn) = −nθ + nX̄n log θ −
n∑

i=1

log(Xi!).

Thus,

lθ(X1, ..., Xn) =
n

θ
(X̄n − θ).

It is direct to check all the regularity conditions of Theorem 3.1 are satisfied. Then In(θ) =
n2/θ2V ar(X̄n) = n/θ. The Carmér-Rao bound for θ is equal to θ/n. On the other hand, we
note X̄n is an unbiased estimator of θ. Moreover, since X̄n is the complete statistic for θ. X̄n

is indeed the UMVUE of θ. Note V ar(X̄n) = θ/n. We conclude that X̄n attains the lower
bound. However, although Tn = X̄2

n − n−1X̄n is unbiased for θ2 and it is UMVUE of θ2, we
find V ar(Tn) = 4θ3/n + 2θ2/n2 > the Cramér-Rao lower bound for θ2. In other words, some
UMVUE attains the lower bound but some do not.

Example 4.13 Suppose X1, ..., Xn are i.i.d with density pθ(x) = g(x − θ) where g is known
density. This family is the one-dimensional location model. Assume g ′ exists and the regularity
conditions in Theorem 4.1 are satisfied. Then

In(θ) = nEθ[
g′(X − θ)
g(X − θ)

2

] = n

∫
g′(x)2

g(x)
dx.

Note the information does not depend on θ.

Example 4.14 Suppose X1, ..., Xn are i.i.d with density pθ(x) = g(x/θ)/θ where g is a known
density function. This model is one-dimensional scale model with the common shape g. It is
direct to calculate

In(θ) =
n

θ2

∫
(1 + y

g′(y)

g(y)
)2g(y)dy.

4.3.2 Information bound in multi-dimensional model

We can extend Theorem 4.1 to the case in which the model is k-dimensional parametric family:
P = {Pθ : θ ∈ Θ ⊂ Rk}. Similar to Assumptions A-C, we assume Pθ has density function
pθ with respect to some σ-finite dominating measure µ; T (X) is an estimator for q(θ) with
Eθ[|T (X)|] <∞ and b(θ) = Eθ[T (X)]− q(θ is the bias of T (X); q̇(θ) = ∇q(θ) exists.

Theorem 4.2 (Information inequality) Suppose that
(M1) Θ an open subset in Rk.
(M2) There exists a set B with µ(B) = 0 such that for x ∈ Bc, ∂pθ(x)/∂θi exists for all θ and
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i = 1, ..., k. The set A = {x : pθ(x) = 0} does no depend on θ.
(M3) The k × k matrix I(θ) = (Iij(θ)) = Eθ[l̇θ(X)l̇θ(X)′] > 0 is a positive definite where

l̇θi(x) =
∂

∂θi
log pθ(x).

Here, I(θ) is called the Fisher information matrix for θ and l̇θ is called the score for θ.
(M4)

∫
pθ(x)dµ(x) and

∫
T (x)pθ(x)dµ(x) can both be differentiated with respect to θ under

the integral sign.
(M5)

∫
pθ(x)dµ(x) can be differentiated twice with respect to θ under the integral sign.

If (M1)-(M4) holds, than

V arθ(T (X)) ≥ (q̇(θ) + ḃ(θ))′I−1(θ)(q̇(θ) + ḃ(θ))

and this lower bound is equal q̇(θ)′I(θ)−1q̇(θ) if T (X) is unbiased. If, in addition, (M5) holds,
then

I(θ) = −Eθ[l̈θθ(X)] = −
(
Eθ

{
∂2

∂θi∂θj
log pθ(X)

})
.

†

Proof Under (M1)-(M4), we have

q̇(θ) + ḃ(θ) =

∫
T (x)l̇θ(x)pθ(x)dµ(x) = Eθ[T (x)l̇θ(X)].

On the other hand, from
∫
pθ(x)dµ(x) = 1, 0 = Eθ[l̇θ(X)]. Thus,

|
{
q̇(θ) + ḃ(θ)

}′
I(θ)−1

{
q̇(θ) + ḃ(θ)

}
|

= |Eθ[T (X)(q̇(θ) + ḃ(θ))′I(θ)−1l̇θ(X)]|
= |Covθ(T (X), (q̇(θ) + ḃ(θ))′I(θ)−1l̇θ(X))|

≤
√
V arθ(T (X))(q̇(θ) + ḃ(θ))′I(θ)−1(q̇(θ) + ḃ(θ)).

We obtain the information inequality. In addition, if (M5) holds, we further differentiate∫
l̇θ(x)pθ(x)dµ(x) = 0 and obtain the then

I(θ) = −Eθ[l̈θθ(X)] = −
(
Eθ

{
∂2

∂θi∂θj
log pθ(X)

})
.

†

Example 4.15 The Weibull family P is the parametric model with densities

pθ(x) =
β

α
(
x

α
)β−1 exp

{
−(

x

α
)β
}
I(x ≥ 0)
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with respect to the Lebesgue measure where θ = (α, β) ∈ (0,∞) × (0,∞). We can easily
calculate that

l̇α(x) =
β

α

{
(
x

α
)β − 1

}
,

l̇β(x) =
1

β
− 1

β
log
{

(
x

α
)β
}{

(
x

α
)β − 1

}
.

Thus, the Fisher information matrix is

I(θ) =

(
β2/α2 −(1− γ)/α

−(1− γ)/α {π2/6 + (1− γ)2} /β2

)
,

where γ is the Euler’s constant (γ ≈ 0.5777...). The computation of I(θ) is simplified by noting
that Y ≡ (X/α)β ∼ Exponential(x).

4.3.3 Efficient influence function and efficient score function

From the above proof, we also note that the lower bound is attained for an unbiased estimator
T (X) if and only if T (X) = q̇(θ)′I−1(θ)l̇θ(X), the latter is called the efficient influence function
for estimating q(θ) and its variance, which is equal to q̇(θ)′I(θ)−1q̇(θ), is called the information
bound for q(θ). If we regard q(θ) as a function on all the distributions of P and denote ν(Pθ) =
q(θ), then in some literature, the efficient influence function and the information bound for q(θ)
can be represented as l̃(X,Pθ|ν,P) and I−1(Pθ|ν,P), both implying that the efficient influence
function and the information matrix are meant for a fixed model P, for a parameter of interest
ν(Pθ) = q(θ), and at a fixed distribution Pθ.

Proposition 4.3 The information bound I−1(P |ν,P) and the efficient influence function
l̃(·, P |ν,P) are invariant under smooth changes of parameterization. †

Proof Suppose γ 7→ θ(γ) is a one-to-one continuously differentiable mapping of an open subset
Γ of Rk onto Θ with nonsingular differential θ̇. The model of distribution can be represented
as {Pθ(γ) : γ ∈ Γ}. Thus, the score for γ is θ̇(γ)l̇θ(X) so the information matrix for γ is equal
to

θ̇(γ)′I(θ(γ))θ̇(γ),

which is the same as the information matrix for θ = θ(γ). The efficient influence function for
γ is equal to

(θ̇(γ)q̇(θ(γ)))′I(γ)−1 l̇γ = q̇(θ(γ))′I(θ(γ))−1l̇θ

and it is the same as the efficient influence function for θ. †

The proposition implies that the information bound and the efficient influence function for
some ν in a family of distribution are independent of the parameterization used in the model.
However, with some natural and simple parameterization, the calculation of the information
bound and the efficient influence function can be directly done along the definition. Especially,
we look into a specific parameterization where θ′ = (ν ′, η′) and ν ∈ N ⊂ Rm, η ∈ H ⊂ Rk−m.
ν can be regarded as a map mapping Pθ to one of component of θ, ν, and it is the parameter
of interest while η is a nuisance parameter. We want to assess the cost of not knowing η by



POINT ESTIMATION AND EFFICIENCY 93

comparing the information bounds and the efficient influence functions for ν in the model P (η
is unknown parameter) and Pη (η is known and fixed).

In the model P, we can decompose

l̇θ =

(
l̇1
l̇2

)
, l̃θ =

(
l̃1
l̃2

)
,

where l̇1 is the score for ν and l̇2 is the score for η, l̃1 is the efficient influence function for ν and
l̃2 is the efficient influence function for η. Correspondingly, we can decompose the information
matrix I(θ) into

I(θ) =

(
I11 I12

I21 I22

)
,

where I11 = Eθ[l̇1 l̇
′
1], I12 = Eθ[l̇1 l̇

′
2], I21 = Eθ[l̇2 l̇

′
1], and I22 = Eθ[l̇2l̇

′
2]. Thus,

I−1(θ) =

(
I−1

11·2 −I−1
11·2I12I

−1
22

−I−1
22·1I21I

−1
11 I−1

22·1

)
≡
(
I11 I12

I21 I22

)
,

where
I11·2 = I11 − I12I

−1
22 I21, I22·1 = I22 − I21I

−1
11 I12.

Since the information bound for estimating ν is equal to

I−1(Pθ|ν,P) = q̇(θ)′I−1(θ)q̇(θ),

where q(θ) = ν, and
q̇(θ) =

(
Im×m 0m×(k−m)

)
,

we obtain the information bound for ν is given by

I−1(Pθ|ν,P) = I−1
11·2 = (I11 − I12I

−1
22 I21)−1.

The efficient influence function for ν is given by

l̃1 = q̇(θ)′I−1(θ)l̇θ = I−1
11·2 l̇

∗
1,

where l̇∗1 = l̇1 − I12I
−1
22 l̇2. It is easy to check

I11·2 = E[l̇∗1(l̇∗1)′].

Thus, l∗1 is called the efficient score function for ν in P.
Now we consider the model Pη with η known and fixed. It is clear the information bound

for ν is just I−1
11 and the efficient influence function for ν is equal to I−1

11 l̇1.
Since I11 > I11·2 = I11 − I12I

−1
22 I21, we conclude that knowing η increases the Fisher infor-

mation for ν and decreases the information bound for ν. Moreover, knowledge of η does not
increase information about ν if and only if I12 = 0. In this case, l̃1 = I−1

11 l̇1 and l∗1 = l1.

Example 4.16 Suppose

P = {Pθ : pθ = φ((x− ν)/η)/η, ν ∈ R, η > 0} .
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Note that

l̇ν(x) =
x− ν
η2

, l̇η(x) =
1

η

{
(x− ν)2

η2
− 1

}
.

Then the information matrix I(θ) is given by by

I(θ) =

(
η−2 0
0 2η−2

)
.

Then we can estimate the ν equally well whether we know the variance or not.

Example 4.17 If we reparameterize the above model as

Pθ = N(ν, η2 − ν2), η2 > ν2.

The easy calculation shows that I12(θ) = νη/(η2 − ν2)2. Thus lack of knowledge of η in this
parameterization does change the information bound for estimation of ν.

We provide a nice geometric way of calculating the efficient score function and the efficient
influence function for ν. For any θ, the linear space L2(Pθ) = {g(X) : Eθ[g(X)2] < ∞} is a
Hilbert space with the inner product defined as

< g1, g2 >= E[g1(X)g2(X)].

On this Hilbert space, we can define the concept of the projection. For any closed linear space
S ⊂ L2(Pθ) and any g ∈ L2(Pθ), the projection of g on S is g̃ ∈ S such that g− g̃ is orthogonal
to any g∗ in S in the sense that

E[(g(X)− g̃(X))g∗(X)] = 0, ∀g∗ ∈ S.

The orthocomplement of S is a linear space with all the g ∈ L2(P ) such that g is orthogonal
to any g∗ ∈ S. The above concepts agree with the usual definition in the Euclidean space.
The following theorem describes the calculation of the efficient score function and the efficient
influence function.

Theorem 4.3 A. The efficient score function l̇∗1(·, Pθ|ν,P) is the projection of the score function
l̇1 on the orthocomplement of [l̇2] in L2(Pθ), where [l̇2] is the linear span of the components of
l̇2.
B. The efficient influence function l̃(·, Pθ|ν,Pη) is the projection of the efficient influence function
l̃1 on [l̇1] in L2(Pθ). †

Proof A. Suppose the projection of l̇1 on [l̇2] is equal to Σl̇2 for some matrix Σ. Since E[(l̇1 −
Σl̇2)l̇′2] = 0, we obtain Σ = I12I

−1
22 then the projection on the orthocomplement of [l̇2] is equal

to l̇1 − I12I
−1
22 l̇2, which is the same as l̇∗1.

B. After the algebra, we note

l̃1 = I−1
11·2(l̇1 − I12I

−1
22 l̇2) = (I−1

11 + I−1
11 I12I

−1
22·1I21I

−1
11 )(l̇1 − I12I

−1
22 l̇2) = I−1

11 l̇1 − I−1
11 I12 l̃2.

Since from A, l̃2 is orthogonal to l̇1, the projection of l̃1 on [l̇1] is equal I−1
11 l̇1, which is the

efficient influence function l̃(·, Pθ|ν,Pη). †
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The following table describes the relationship among all these terminologies.
Term Notation P (η unknown) Pη (η known)

efficient score l̇∗1(, P |ν, ·) l̇∗1 = l̇1 − I12I
−1
22 l̇2 l̇1

information I(P |ν, ·) E[l̇∗1(l̇∗1)′] = I11 − I12I
−1
22 I22 I11

efficient l̃1(·, P |ν, ·) l̃1 = I11 l̇1 + I12 l̇2 = I−1
11·2l̇

∗
1 I−1

11 l̇1
influence information = I−1

11 l̇1 − I−1
11 I12l̃2

information bound I−1(P |ν, ·) I11 = I−1
11·2 = I−1

11 + I−1
11 I12I

−1
22·1I21I

−1
11 I−1

11

4.4 Asymptotic Efficiency Bound

4.4.1 Regularity conditions and asymptotic efficiency theorems

The Cramér-Rao bound can be considered as the lower bound for any unbiased estimator in
finite sample. One may ask whether such a bound still holds in large sample. To be specific,
we suppose X1, ..., Xn are i.i.d Pθ (θ ∈ R) and an estimator Tn for θ satisfies that

√
n(Tn − θ)→d N(0, V (θ)2).

Then the question is whether V (θ)2 ≥ 1/I(θ). Unfortunately, this may not be true as the
following example due to Hodges gives one counterexample.

Example 4.18 Let X1, ..., Xn be i.i.d N(θ, 1) so that I(θ) = 1. Let |a| < 1 and define

Tn =

{
X̄n if|X̄n| > n−1/4

aX̄n if|X̄n| ≤ n−1/4.

Then

√
n(Tn − θ) =

√
n(X̄n − θ)I(|X̄n| > n−1/4) +

√
n(aX̄n − θ)I(|X̄n| ≤ n−1/4)

=d ZI(|Z +
√
nθ| > n1/4) +

{
aZ +

√
n(a− 1)θ

}
I(|Z +

√
nθ| ≤ n1/4)

→a.s. ZI(θ 6= 0) + aZI(θ = 0).

Thus, the asymptotic variance of
√
nTn is equal 1 for θ 6= 0 and a2 for θ = 0. The latter is

smaller than the Cramér-Rao bound. In other words, Tn is a superefficient estimator.
To avoid the Hodge’s superefficient estimator, we need impose some conditions to Tn in

addition to the weak convergence of
√
n(Tn − θ). One such condition is called locally regular

condition in the following sense.

Definition 4.2 {Tn} is a locally regular estimator of θ at θ = θ0 if, for every sequence {θn} ⊂ Θ
with

√
n(θn − θ)→ t ∈ Rk, under Pθn ,

(local regularity)
√
n(Tn − θn)→d Z, as n→∞

where the distribution of Z depend on θ0 but not on t. Thus the limit distribution of
√
n(Tn−θn)

does not depend on the direction of approach t of θn to θ0. {Tn} is a locally Gaussian regular
if Z has normal distribution. †
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In the above definition,
√
n(Tn − θn) →d Z under Pθn is equivalent to saying that for any

bounded and continuous function g, Eθn [g(
√
n(Tn−θn))]→ E[g(Z)]. One can consider a locally

regular estimator as the one whose limit distribution is locally stable: if data are generated under
a model not far from a given model, the limit distribution of centralized estimator remains the
same.

Furthermore, the locally regular condition, combining with the following two additional
conditions, gives the results that the Cramér-Rao bound is also the asymptotic lower bound:

(C1) (Hellinger differentiability) A model P = {Pθ : θ ∈ Rk} is a parametric model dominated
by a σ-finite measure µ. It is called a Hellinger-differentiable parametric model if

‖√pθ+h −
√
pθ −

1

2
h′ l̇θ
√
pθ‖L2(µ) = o(|h|),

where pθ = dPθ/dµ.

(C2) (Local Asymptotic Normality (LAN)) In a model P = {Pθ : θ ∈ Rk} dominated by a
σ-finite measure µ, suppose pθ = dPθ/dµ. Let l(x; θ) = log p(x, θ) and let

ln(θ) =
n∑

i=1

l(Xi; θ)

be the log-likelihood function of X1, ..., Xn. The local asymptotic normality condition at θ0 is

ln(θ0 + n−1/2t)− ln(θ0)→d N(−1

2
t′I(θ0)t, t′I(θ0)t)

under Pθ0 .
Both conditions (C1) and (C2) are the smooth conditions imposed on the parametric models.

In other words, we do not allow a model whose parameterization is irregular. An irregular model
is seldom encountered in practical use.

The following theorem gives the main results.

Theorem 4.4 (Hájek’s convolution theorem) Under conditions (C1)-(C2) with I(θ0) non-
singular. For any locally regular estimator of θ, {Tn}, the limit distribution of

√
n(Tn − θ0)

under Pθ0 satisfies
Z =d Z0 + ∆0,

where Z0 ∼ N(0, I−1(θ0)) is independent of ∆0. †

As a corollary, if V (θ0)2 is the asymptotic variance of
√
n(Tn − θ0), then V (θ0)2 ≥ I−1(θ0).

Thus, the Cramér-Rao bound is a lower bound for the asymptotic variances of any locally
regular estimators. Furthermore, we obtain the following corollary from Theorem 4.4.

Corollary 4.1 Suppose that {Tn} is a locally regular estimator of θ at θ0 and that U : Rk → R+

is bowl-shaped loss function; i.e., U(x) = U(−x) and {x : U(x) ≤ c} is convex for any c ≥ 0.
Then

lim inf
n

Eθ0 [U(
√
n(Tn − θ0))] ≥ E[U(Z0)],

where Z0 ∼ N(0, I(θ0)−1). †
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Corollary 4.2 (Hájek-Le Cam asymptotic minmax theorem) Suppose that (C2) holds,
that Tn is any estimator of θ, and U is bowl-shaped. Than

lim
δ→0

lim inf
n

sup
θ:
√
n|θ−θ0|≤δ

Eθ[U(
√
n(Tn − θ))] ≥ E[U(Z0)],

where Z0 ∼ N(0, I(θ0)−1). †

In summary, the two corollaries conclude that the asymptotic loss of any regular estimators
is at least the loss given by the distribution Z0. Thus, from this point of view, Z0 is also the
distribution of most efficiency. The proofs of the two corollaries are beyond this book so are
skipped.

4.4.2 Le Cam’s lemmas

Before proving Theorem 4.4, we introduce the contiguity definition and the Le Cam’s lemmas.
Consider a sequence of measure spaces (Ωn,An, µn) and on each measure space, we have two
probability measure Pn and Qn with Pn ≺≺ µn and Qn ≺≺ µn. Let pn = dPn/dµn and
qn = dQn/dµn be the corresponding densities of Pn and Qn. We define the likelihood ratios

Ln =





qn/pn if pn > 0
1 if qn = pn = 0
n if qn > 0 = pn.

Definition 4.3 (Contiguity) The sequence {Qn} is contiguous to {Pn} if for every sequence
Bn ∈ An for which Pn(Bn)→ 0 it follows that Qn(Bn)→ 0. †

Thus contiguity of {Qn} to {Pn} means that Qn is “asymptotically absolutely continuous”
with respect to Pn. We denote {Qn} / {Pn}. Two sequences are contiguous to each other if
{Qn} / {Pn} and {Pn} / {Qn} and we write {Pn} / .{Qn}.

Definition 4.4 (Asymptotic orthogonality) The sequence {Qn} is asymptotically orthogonal to
{Pn} if there exists a sequence Bn ∈ An such that Qn(Bn)→ 1 and Pn(Bn)→ 0. †

Proposition 4.4 (Le Cam’s first lemma) Suppose under Pn, Ln →d L with E[L] = 1. Then
{Qn} / {Pn}. On the contrary, if {Qn} / {Pn} and under Pn, Ln →d L, then E[L] = 1. †

Proof We fist prove the first half of the lemma. Let Bn ∈ An with Pn(Bn) → 0. Then
IΩn−Bn converges to 1 in probability under Pn. Since Ln is asymptotically tight, (Ln, IΩn−Bn) is
asymptotically tight under Pn. Thus, by the Helly’s lemma, for every subsequence of {n}, there
exists a further subsequence such that (Ln, IΩn−Bn) →d (L, 1). By the Protmanteau Lemma,
since (v, t) 7→ vt is continuous and nonnegative,

lim inf
n

Qn(Ωn − Bn) ≥ lim inf
n

∫
IΩn−Bn

dQn

dPn
dPn ≥ E[L] = 1.

We obtain Qn(Bn)→ 0. Thus {Qn} / {Pn}.
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We then prove the second half of the lemma. The probability measure Rn = (Pn + Qn)/2
dominate both Pn and Qn. Note that {dPn/dQn}, {Ln} and Wn = dPn/dRn are tight with
respect to {Qn}, {Pn} and {Rn}. By the Prohov’s theorem, for any subsequence, there exists
a further subsequence such that

dPn
dQn

→d U, under Qn,

Ln =
dQn

dPn
→d L, under Pn,

Wn =
dPn
dRn

→d W, under Rn

for certain random variables U , V , and W . Since ERn [Wn] = 1 and 0 ≤ Wn ≤ 2, we obtain
E[W ] = 1. For a given bounded, continuous function f , define g(ω) = f(ω/(2− ω))(2− ω) for
0 ≤ ω < 2 and g(2) = 0. Then g is continuous. Thus,

EQn [f(
dPn
dQn

)] = ERn [f(
dPn
dQn

)
dQn

dRn

] = ERn [g(Wn)]→ E[f(
W

2−W )(2−W )].

Since EQn[f(dPn/dQn)]→ E[f(U)], we have

E[f(U)] = E[f(
W

2−W )(2−W )].

Choose fm in the above expression such that fm ≤ 1 and fm decreases to I{0}. From the
dominated convergence theorem, we have

P (U = 0) = E[I{0}(
W

2−W )(2−W )] = 2P (W = 0).

However, since

Pn({ dPn
dQn

≤ εn} ∩ {qn > 0}) ≤
∫

dPn/dQn≤εn

dPn
dQn

dQn ≤ εn → 0

and {Qn} / {Pn},

P (U = 0) = lim
n
P (U ≤ εn) ≤ lim inf

n
Qn(

dPn
dQn

≤ εn) = lim inf
n

Qn({ dPn
dQn

≤ εn} ∩ {qn > 0}) = 0.

That is, P (W = 0) = 0. Similar to the above deduction, we obtain that

E[f(L)] = E[f(
2−W
W

)W ].

Choose fm in the expression such that fm(x) increase to x. By the monotone convergence
theorem, we have

E[L] = E[(2−W )I(W > 0)] = 2P (W > 0)− 1 = 1.

†
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As a corollary, we have

Corollary 4.3 If logLn →d N(−σ2/2, σ2) under Pn, then {Qn} / {Pn}. †

Proof Under Pn, Ln →d exp{−σ2/2+σZ} where the limit has mean 1. The result thus follows
from Proposition 4.4. †

Proposition 4.5 (Le Cam’s third lemma) Let Pn and Qn be sequence of probability mea-
sures on measurable spaces (Ωn,An), and let Xn : Ωn → Rk be a sequence of random vectors.
Suppose that Qn / Pn and under Pn,

(Xn, Ln)→d (X,L).

Then G(B) = E[IB(X)L] defines a probability measure, and under Qn, Xn →d G. †

Proof Because V ≥ 0, for countable disjoint sets B1, B2, ..., by the monotone convergence
theorem,

G(∪Bi) = E[lim
n

(IB1 + ...+ IBn)L] = lim
n

n∑

i=1

E[IBiL] =
∞∑

i=1

G(Bi).

From Proposition 4.4, E[L] = 1. Then G(Ω) = 1. G is a probability measure. Moreover, for
any measurable simple function f , it is easy to see

∫
fdG = E[f(X)L].

Thus, this equality holds for any measurable function f . In particular, for continuous and
nonnegative function f , (x, v) 7→ f(x)v is continuous and nonnegative. Thus,

lim inf EQn[f(Xn)] ≥ lim inf

∫
f(Xn)

dQn

dPn
dPn ≥ E[f(X)L].

Thus, under Qn, Xn →d G. †

Remark 4.1 In fact, the name Le Cam’s third lemma is often reserved for the following result.
If under Pn,

(Xn, logLn)→d Nk+1

((
µ

−σ2/2

)
,

(
Σ τ
τ σ2

))
,

then under Qn, Xn →d Nk(µ+ τ,Σ). This result follows from Proposition 4.5 by noticing that
the characteristic function of the limit distribution G is equal to E[eitXeY ], where (X, Y ) has
the joint distribution

Nk+1

((
µ

−σ2/2

)
,

(
Σ τ
τ σ2

))
.

Such a characteristic function is equal exp{it′(µ + τ) − t′Σt/2}, which is the characteristic
function for Nk(µ+ τ,Σ).
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4.4.3 Proof of the convolution theorem

Equipped with the Le Cam’s two lemmas, we start to prove the convolution result in Theorem
4.4.

Proof of Theorem 4.4 We divide the proof into the following steps.
Step I. We first prove that the Hellinger differentiability condition (C1) implies that Pθ0 [l̇θ0 ] = 0,
the Fisher information I(θ0) = Eθ0[l̇θ0 l

′
θ0

] exists, and moreover, for every convergent sequence
hn → h, as n→∞,

log

n∏

i=1

pθ0+hn/
√
n

pθ0
(Xi) =

1√
n

n∑

i=1

h′ l̇θ0(Xi)−
1

2
h′Iθ0h+ rn,

where rn →p 0. To see that , we abbreviate pn, p, g as pθ0+h/
√
n, pθ0, h

′ l̇θ0. Since
√
n(
√
pn−√p)

converges in L2(µ) to g
√
p/2,

√
pn converges to

√
p in L2(µ). Then

E[g] =

∫
1

2
g
√
p2
√
pdµ = lim

n→∞

∫ √
n(
√
pn −

√
p)(
√
pn +

√
p)dµ = 0.

Thus, Eθ0 [l̇θ0 ] = 0. Let Wni = 2(
√
pn(Xi)/p(Xi)− 1). We have

V ar(

n∑

i=1

Wni −
1√
n

n∑

i=1

g(Xi)) ≤ E[(
√
nWni − g(Xi))

2]→ 0,

E[
n∑

i=1

Wni] = 2n(

∫ √
pn
√
pdµ− 1) = −n

∫
[
√
pn −

√
p]2dµ→ −1

4
E[g2].

Here, E[g2] = h′I(θ0)h. By the Chebyshev’s inequality, we obtain

n∑

i=1

Wni =
1√
n

n∑

i=1

g(Xi)−
1

4
E[g2] + an,

where an →p 0.
Next, by the Taylor expansion,

log
n∏

i=1

pn
p

(Xi) = 2
n∑

i=1

log(1 +
1

2
Wni) =

n∑

i=1

Wni −
1

4

n∑

i=1

W 2
ni +

1

2

n∑

i=1

W 2
niR(Wni),

where R(x) → 0 as x → 0. Since E[(
√
nWni − g(Xi))

2] → 0, nW 2
ni = g(Xi)

2 + Ani where
E[|Ani|]→ 0. Then

∑n
i=1 W

2
ni →p E[g2]. Moreover,

nP (|Wni| > ε
√

2) ≤ nP (g(Xi)
2 > nε2)+nP (|Ani| > nε2) ≤ ε−2E[g2I(g2 > nε2)]+ε−2E[|Ani|]→ 0.

The left-hand side is the upper bound for P (max1≤i≤n |Wni| > ε). Thus, max1≤i≤n |Wni| con-
verges to zero in probability; so is max1≤i≤n |R(Wni)|. Therefore,

log
n∏

i=1

pn
p

(Xi) =
n∑

i=1

Wni −
1

4
E[g2] + bn,
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where bn →p 0. Combining all the results, we obtain

log
n∏

i=1

pθ0+hn/
√
n

pθ0
(Xi) =

1√
n

n∑

i=1

h′ l̇θ0(Xi)−
1

2
h′Iθ0h+ rn,

where rn →pn 0.

Step II. Let Qn be the probability measure with density
∏n

i=1 pθ0+h/
√
n(xi) and Pn be the

probability measure with
∏n

i=1 pθ0(xi). Define

Sn =
√
n(Tn − θ0), ∆n =

1√
n

n∑

i=1

l̇θ0(Xi).

By the assumptions, Sn weakly converges to some distribution and so is ∆n under Pn; thus,
(Sn,∆n) is tight under Pn. By the Prohorov’s theorem, for any subsequence, there exists a
further subsequence such that (Sn,∆n) →d (S,∆) under Pn. From Step I, we immediately
obtain that under Pn,

(Sn, log
dQn

dPn
)→d (S, h′∆− 1

2
h′I(θ0)h).

Since under Pn, dQn/dPn weakly converges to N(−h′I(θ0)h/2, h′I(θ0)h), Corollary 4.3 gives
that {Qn}/{Pn}. Then from the Le Cam’s third lemma, under Qn, Sn =

√
n(Tn−θ0) converges

in distribution to a distribution Gh. Clearly, Gh is the same as distribution with Z + h.

Step III. We show Z = Z0 + ∆0 where Z0 ∼ N(0, I(θ0)−1) is independent of ∆0. From Step II,
we have

Eθ0+h/
√
n[exp{it′Sn}]→ exp{it′h}E[exp{it′Z}].

On the other hand,

Eθ0+h/
√
n[exp{it′Sn}] = Eθ0 [exp{it′Sn + log

dQn

dPn
}] + o(1)→ Eθ0 [exp{it′Z + h′∆− 1

2
h′I(θ0)h}].

We have

Eθ0 [exp{it′Z + h′∆− 1

2
h′I(θ0)h}] = exp{it′h}Eθ0 [exp{it′Z}]

and it should hold for any complex number t and h. We let h = −i(t′ − s′)I(θ0)−1 and obtain

Eθ0 [exp{it′(Z − I(θ0)−1∆) + is′I(θ0)−1∆}] = Eθ0 [exp{it′Z +
1

2
t′I(θ0)−1t}] exp{−1

2
s′I(θ0)−1s}.

This implies that ∆0 = (Z − I(θ0)−1∆) is independent of Z0 = I(θ0)−1∆ and Z0 has the
characteristics function exp{−s′I(θ0)−1s/2}, meaning Z0 ∼ N(0, I(θ0)−1). Then Z = Z0 + ∆0.
†

The convolution theorem indicates that if {Tn} is locally regular and the model P is the
Hellinger differentiable and LAN, then the Cramér-Rao bound is also the asymptotic lower
bound. We have shown that the result holds for estimating θ. In fact, the same procedure
applies to estimating q(θ) where q is differentiable at θ0. Then the local regularity condition is
that under Pθ0+h/

√
n, √

n(Tn − q(θ0 + h/
√
n))→d Z,

where Z is independent of h. The result in Theorem 4.4 then becomes that Z = Z0 + ∆0 where
Z0 ∼ N(0, q̇(θ0)′I(θ0)−1q(θ0)) is independent of ∆0.
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4.4 Sufficient conditions for Hellinger-differentiability and local reg-
ularity

Checking the conditions of the local regularity and the Hellinger-differentiability and may be
easy in practice. The following propositions give some sufficient conditions for the Hellinger
differentiability and the local regularity.

Proposition 4.6. For every θ in an open subset of Rk let pθ be a µ-probability density. Assume
that the map θ 7→ sθ(x) =

√
pθ(x) is continuously differentiable for every x. If the elements

of the matrix I(θ) = E[(ṗθ/pθ)(ṗθ/pθ)
′] are well defined and continuous at θ. Then the map

θ →√pθ is Hellinger differentiable with l̇θ given by ṗθ/pθ. †

Proof The map θ 7→ pθ = s2
θ is differentiable. We have ṗθ = 2sθṡθ so conclude ṡθ is zero

whenever ṗθ = 0. We can write ṡθ = (ṗθ/pθ)
√
pθ/2.

On the other hand,

∫ {
sθ+tht − sθ

t

}2

dµ =

∫ {∫ 1

0

(ht)
′ṡθ+uthtdu

}2

dµ

≤
∫ ∫ 1

0

((ht)
′ṡθ+utht)

2dudµ =
1

2

∫ 1

0

h′tI(θ + utht)htdu.

As ht → h, the right side converges to
∫

(h′ṡθ)2dµ by the continuity of Iθ. Since

sθ+tht − sθ
t

− h′ṡθ

converges to zero almost surely, following the same proof as Theorem 3.1 (E) of Chapter 3, we
obtain ∫ [

sθ+tht − sθ
t

− h′ṡθ
]2

dµ→ 0.

†

Proposition 4.7 If {Tn} is an estimator sequence of q(θ) such that

√
n(Tn − q(θ))−

1√
n

n∑

i=1

q̇θI(θ)−1l̇θ(Xi)→p 0,

where q is differentiable at θ, then Tn is the efficient and regular estimator for q(θ). †

Proof “⇒′′ Let ∆n,θ = n−1/2
∑n

i=1 l̇θ(Xi). Then ∆n,θ converges in distribution to a vector ∆θ ∼
N(0, I(θ)). From Step I in proving Theorem 4.4, log dQn/dPn is equivalent to h′∆n,θ−h′I(θ)h/2
asymptotically. Thus, the Slutsky’s theorem gives that under Pθ

(√
n(Tn − q(θ)), log

dQn

dPn

)
→d (q̇θI(θ)−1∆θ, h

′∆θ − h′I(θ)h/2)
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∼ N

((
0

−h′I(θ)h/2

)
,

(
q̇′θI(θ)−1q̇θ q̇′θh

q̇θh
′ h′I(θ)h

))
.

Then from the Le Cam’s third lemma, under Pθ+h/√n,
√
n(Tn − q(θ)) converges in distribution

to a normal distribution with mean q̇θh and covariance matrix q̇′θI(θ)−1q̇θ. Thus, under Pθ+h/√n,√
n(Tn−q(θ+h/

√
n)) converges in distribution to N(0, q̇θI(θ)′q̇′θ). We obtain that Tn is regular.

†

Definition 4.5 If a sequence of estimator {Tn} has the expansion

√
n(Tn − q(θ)) = n−1/2

n∑

i=1

Γ(Xi) + rn,

where rn converges to zero in probability, then Tn is called an asymptotically linear estimator
for q(θ) with influence function Γ. Note that Γ depends on θ. †

For asymptotically linear estimator, the following result holds.

Proposition 4.8 Suppose Tn is an asymptotically linear estimator of ν = q(θ) with influence
function Γ. Then
A. Tn is Gaussian regular at θ0 if and only if q(θ) is differentiable at θ0 with derivative q̇θ and,
with l̃ν = l̃(·, Pθ0|q(θ),P) being the efficient influence function for q(θ), Eθ0[(Γ − l̃ν)l̇] = 0 for
any score l̇ of P.
B. Suppose q(θ) is differentiable and Tn is regular. Then Γ ∈ [l̇] if and only if Γ = l̃ν. †

Proof A. By asymptotic linearity of Tn, it follows that

( √
n(Tn − q(θ0))

Ln(θ0 + tn/
√
n)− Ln(θ0)

)
→d N

{(
0

−t′I(θ0)t

)
,

(
Eθ0 [ΓΓ′] Eθ0 [Γl̇′]t
Eθ0[l̇Γ

′]t t′I(θ0)t

)}
.

From the Le Cam’s third lemma, we obtain that under Pθ0+tn/
√
n,

√
n(Tn − q(θ0))→d N(Eθ0 [Γ′l̇]t, Eθ0 [ΓΓ′]).

If Tn is regular, we have that under Pθ0+tn/
√
n,

√
n(Tn − q(θ0 + tn/

√
n))→d N(0, Eθ0[ΓΓ′]).

Comparing with the above convergence, we obtain

√
n(q(θ0 + tn/

√
n)− q(θ0))→ Eθ0 [Γ′l̇]t.

This implies q is differentiable with q̇θ = Eθ[Γ
′l̇]. Since Eθ0 [l̃′ν l̇] = q̇θ, the direction “⇒′′ holds.

To prove the other direction, since q(θ) is differentiable and under Pθ0+tn/
√
n,

√
n(Tn − q(θ0))→d N(Eθ0 [Γ′ l̇]t, E[ΓΓ′])
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from the Le Cam’s third lemma, we obtain under Pθ0+tn/
√
n,

√
n(Tn − q(θ0 + tn/

√
n))→d N(0, E[ΓΓ′]).

Thus, Tn is Gaussian regular.
B. If Tn is regular, from A, we obtain Γ− l̃ν is orthogonal to any score in P. Thus, Γ ∈ [l̇]

implies that Γ = l̃ν. The converse is obvious. †

Remark 4.2 We have discussed the efficiency bound for real parameters. In fact, these results
can be generalized (though non-trivial) to the situation where θ contains infinite dimensional
parameter in semiparametric model. This generalization includes semiparametric efficiency
bound, efficient score function, efficient influence function, locally regular estimator, Hellinger
differentiability, LAN and the Hájek convolution result.

READING MATERIALS : You should read Lehmann and Casella, Sections 1.6, 2.1, 2.2, 2.3,
2.5, 2.6, 6.1, 6.2, Ferguson, Chapter 19 and Chapter 20

PROBLEMS

1. Let X1, ..., Xn be i.i.d according to Poisson(λ). Find the UMVU estimator of λk for any
positive integer k.

2. Let Xi, i = 1, ..., n, be independently distributed as N(α+ βti, σ
2) where α, β and σ2 are

unknown, and the t’s are known constants that are not all equal. Find the least square
estimators of α and β and show that they are also the UMVU estimators of α and β.

3. If X has the distribution Poisson(θ), show that 1/θ does not have an unbiased estimator.

4. Suppose that we want to model the survival of twins with a common genetic defect, but
with one of the two twins receiving some treatment. Let X represent the survival time
of the untreated twin and let Y represent the survival time of the treated twin. One
(overly simple) preliminary model might be to assume that X and Y are independent
with Exponential(η) and Exponential(θη) distributions, respectively:

fθ,η(x, y) = ηe−ηxηθe−ηθyI(x > 0, y > 0).

(a) On crude approach to estimation in this problem is to reduce the data to W = X/Y .
Find the distribution of W and compute the Cramér-Rao lower bound for unbiased
estimators of θ based on W .

(b) Find the information bound for estimating θ based on observation of (X, Y ) pairs
when η is known and unknown.

(c) Compare the bounds you computed in (a) and (b) and discuss the pros and cons of
reducing to estimation based on the W .
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5. This is a continuation of the preceding problem. A more realistic model involves assuming
that the common parameter η for the two wins varies across sets of twins. There are several
different ways of modeling this: one approach involves supposing that each pair of twins
observed (Xi, Yi) has its own fixed parameters ηi, i = 1, .., n. In this model we observe
(Xi, Yi) with density fθ,ηi for i = 1, ..., n; i.e.,

fθ,ηi(x, y) = ηie
−ηixiηiθe

−ηiθyiI(xi > 0, yi > 0).

This is sometimes called a functional model (or model with incidental nuisance parame-
ters).
Another approach is to assume that η ≡ Z has a distribution, and that our obser-
vations are from the mixture distribution. Assuming (for simplicity) that Z = η ∼
Gamma(a, 1/b) (a and b are known) with density

ga,b(η) =
baηa−1

Γ(a)
exp{−bη}I(η > 0),

it follows that the (marginal) distribution of (X, Y ) is

pθ,a,b(x, y) =

∫ ∞

0

fθ,z(x, y)ga,b(z)dz.

This is sometimes called a “structural model” (or mixture model).

(a) Find the information bound for θ in the functional model based on (Xi, Yi), i =
1, ..., n.

(b) Find the information bound for θ in the structural model based on (Xi, Yi), i =
1, ..., n.

(c) Compare the information bounds you computed in (a) and (b). When is the informa-
tion for θ in the functional model larger than the information for θ in the structural
model?

6. Suppose that X ∼ Gamma(α, 1/β); i.e., X has density pθ given by

pθ(x) =
βα

Γ(α)
xα−1 exp{−βx}I(x > 0), θ = (α, β) ∈ (0,∞)× (0,∞).

Consider estimation of q(θ) = Eθ[X].

(a) Compute the Fisher information matrix I(θ).

(b) Derive the efficient score function, the efficient influence function and the efficient
information bound for α.

(c) Compute q̇(θ) and find the efficient influence functions for estimation of q(θ). Com-
pare the efficient influence functions you find in (c) with the influence function of
the natural estimator X̄n.

7. Compute the score for location, −(f ′/f)(x), and the Fisher information when:
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(a) f(x) = φ(x) = (2π)−1/2 exp{−x2/2}, (normal or Gaussian);

(b) f(x) = exp{−x}/(1 + exp{−x})2, (logistic);

(c) f(x) = exp{−|x|}/2, (double exponential);

(d) f(x) = tk, the t-distribution with k degrees of freedom;

(e) f(x) = exp{−x} exp{− exp(−x)}, (Gumbel or extreme value).

8. Suppose that P = {Pθ : θ ∈ Θ} ,Θ ⊂ Rk is a parametric model satisfying the hypotheses
of the multiparameter Craméer-Rao inequality. Partition θ as θ = (ν, η), where ν ∈ Rm

and η ∈ Rk−m and 1 ≤ m < k. Let l̇ = l̇θ = (l̇1, l̇2) be the corresponding partition of the
scores and with l̃ = I−1(θ)l̇, the efficient influence function for θ, let l̃ = (l̃1, l̃2) be the
corresponding partition of l̃. In both cases, l̇1, l̃1 are m-vectors of functions and l̇2, l̃2 are
k −m vectors. Partition I(θ) and I−1(θ) correspondingly as

I(θ) =

(
I11 I12

I21 I22

)
,

where I11 is m×m, I12 is m× (k−m), I21 is (k−m)×m, I22 is (k−m)× (k−m). also
write

I−1(θ) = [I ij]i,j=1,2.

Verify that

(a) I11 = I−1
11·2 where I11·2 = I11 − I12I

−1
22 I21, I

22 = I−1
22·1 where I22·1 = I22 − I21I

−1
11 I12,

I12 = −I−1
11·2I12I

−1
22 , I21 = −I22 · 1−1I21I

−1
11 ..

(b) Verify that l̃1 = I11 l̇1 + I12 l̇2 = I−1
11·2(l̇1 − I12I

−1
22 l̇2), and l̃2 = I21 l̇1 + I22l̇2 = I−1

22·1(l̇2 −
I21I

−1
11 l̇1).

9. Let Tn be the Hodges superefficient estimator of θ.

(a) Show that Tn is not a regular estimator of θ at θ = 0, but that it is regular at every
θ 6= 0. If θn = t/

√
n, find the limiting distribution of

√
n(Tn − θn) under Pθn .

(b) For θn = t/
√
n show that

Rn(θn) = nEθn [(Tn − θn)2]→ a2 + t2(1− a)2.

This is larger than 1 if t2 > (1 + a)/(1− a), and hence supper efficiency also entails
worse risks in a local neighborhood of the points where the asymptotic variance is
smaller.

10. Suppose that (Y |Z) ∼ Weibull(λ−1 exp{−γZ}, β) and Z ∼ Gη on R with density gη with
respect to some dominating measure µ. Thus the conditional cumulative hazards function
Λ(t|z) is given by

Λγ,λ,β(t|z) = (λeγzt)β = λβeβγztβ

and hence
λγ,λ,β(t|z) = λβeβγzβtβ−1.
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(Recall that λ(t) = f(t)/(1− F (t)) and Λ(t) = − log(1− F (t)) if F is continuous). Thus
it makes sense to reparameterize by defining θ1 = βγ (this the parameter of interest since
it reflects the effect of the covariate Z), θ2 = λβ and θ2 = β. This yields

λθ(t|z) = θ2θ3 exp{θ1z}tθ3−1.

You may assume that a(z) = (∂/∂z) log gη(z) exists and E[a(Z)2] < ∞. Thus Z is
a “covariate” or “predictor variable”, θ1 is a “regression parameter” which affects the
intensity the (conditionally) Exponential variable Y , and θ = (θ1, θ2, θ3, θ4) where θ4 = η.

(a) Derive the joint density pθ(y, z) of (Y, Z) for the reparameterized model.

(b) Find the information matrix for θ. What does the structure of this matrix say about
the effect of η = θ4 being known or unknown about the estimation of θ1, θ2, θ3?

(c) Find the information and information bound for θ1 if the parameter θ2 and θ3 are
known.

(d) What is the information for θ1 if just θ3 is known to be equal to 1?

(e) Find the efficient score function and the efficient influence function for estimation of
θ1 when θ3 is known.

(f) Find the information I11·(2,3) and information bound for θ1 if the parameters θ2 and
θ3 are unknown.

(g) Find the efficient score function and the efficient influence function for estimation of
θ1 when θ2 and θ3 are unknown.

(h) Specialize the calculation in (d)-(g) to the case when Z ∼ Bernoulli(θ4) and compare
the information bounds.

11. Lehmann and Casella, page 72, problems 6.33, 6.34, 6.35

12. Lehmann and Casella, pages 129-137, problems 1.1-3.30

13. Lehamann and Casella, pages 138-143, problems 5.1-6.12

14. Lehmann and Casella, pages 496-501, problems 1.1-2.14

15. Ferguson, pages 131-132, problems 2-5

16. Ferguson, page 139, problems 1-4
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CHAPTER 5 EFFICIENT ESTIMATION: MAXIMUM

LIKELIHOOD APPROACH

In the previous chapter, we have discussed the asymptotic lower bound (efficiency bound) for
all the regular estimators. Then a natural question is what estimator can achieve this bound;
equivalently, what estimator can be asymptotically efficient. In this chapter, we will focus on
the most commonly-used estimator, maximum likelihood estimator. We will show that under
some regularity conditions, the maximum likelihood estimator is asymptotically efficient.

Suppose X1, ..., Xn are i.i.d from Pθ0 in the model P = {Pθ : θ ∈ Θ}. We assume

(A0). θ 6= θ∗ implies Pθ 6= Pθ∗ (identifiability).
(A1). Pθ has a density function pθ with respect to a dominating σ-finite measure µ.
(A2). The set {x : pθ(x) > 0} does not depend on θ.

Furthermore, we denote

Ln(θ) =

n∏

i=1

pθ(Xi), ln(θ) =

n∑

i=1

log pθ(Xi).

Ln(θ) and ln(θ) are called the likelihood function and the log-likelihood function of θ, respectively.
An estimator θ̂n of θ0 is the maximum likelihood estimator (MLE) of θ0 if it maximizes the
likelihood function Ln(θ), equivalently, ln(θ).

Some cautions should be taken in the maximization: first, the maximum likelihood estimator
may not exist; second, even if the maximum likelihood estimator exists, it may not be unique;
third, the definition of the maximum likelihood estimator depends on the parameterization of
pθ so different parameterization may lead to the different estimators.

5.1 Ad Hoc Arguments of MLE Efficiency

In the following, we explain the intuition why the maximum likelihood estimator is the efficient
estimator; while we leave rigorous conditions and arguments to the subsequent sections. First,
to see the consistency of the maximum likelihood estimator, we introduce the definition of the
Kullback-Leibler information as follows.

Definition 5.1 Let P be a probability measure and let Q be another measure on (Ω,A) with
densities p and q with respect to a σ-finite measure µ (µ = P + Q always works). P (Ω) = 1
and Q(Ω) ≤ 1. Then the Kullback-Leibler information K(P,Q) is

K(P,Q) = EP [log
p(X)

q(X)
].

†

Immediately, we obtain the following result.

Proposition 5.1 K(P,Q) is well-defined, and K(P,Q) ≥ 0. K(P,Q) = 0 if and only if P = Q.
†
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Proof By the Jensen’s inequality,

K(P,Q) = EP [− log
q(X)

p(X)
] ≥ − logEP [

q(X)

p(X)
] = − logQ(Ω) ≥ 0.

The equality holds if and only if p(x) = Mq(x) almost surely with respect P and Q(Ω) = 1.
Thus, M = 1 and P = Q. †

Now that θ̂n maximizes ln(θ),

1

n

n∑

i=1

pθ̂n(Xi) ≥
1

n

n∑

i=1

pθ0(Xi).

Suppose θ̂n → θ∗. Then we would expect to the both sides converge to

Eθ0 [pθ∗(X)] ≥ Eθ0[pθ0(X)],

which implies K(Pθ0, Pθ∗) ≤ 0. From Proposition 5.1, Pθ0 = Pθ∗. From (A0), θ∗ = θ0 (the model
identifiability condition is used here). That is, θ̂n converges to θ0. Note in this argument, three
conditions are essential: (i) θ̂n → θ∗ (compactness of θ̂n); (ii) the convergence of n−1ln(θ̂n)
(locally uniform convergence); (iii) Pθ0 = Pθ∗ implies θ0 = θ∗ (identifiability).

Next, we give an ad hoc discussion on the efficiency of the maximum likelihood estimator.
Suppose θ̂n → θ0. If θ̂n is in the interior of Θ, θ̂n solves the following likelihood (or score)
equations

l̇n(θ̂n) =
n∑

i=1

l̇θ̂n(Xi) = 0.

Suppose l̇θ(X) is twice-differentiable with respect to θ. We apply the Taylor expansion to
l̇θ̂n(Xi) at θ0 and obtain

−
n∑

i=1

l̇θ0(Xi) =

n∑

i=1

l̈θ∗(Xi)(θ̂ − θ0),

where θ∗ is between θ0 and θ̂. This gives that

√
n(θ̂ − θ0) = − 1√

n

{
n−1

n∑

i=1

l̈θ∗(Xi)

}−1{ n∑

i=1

l̇θ0(Xi)

}
.

By the law of large number, we can see
√
n(θ̂n − θ0) is asymptotically equivalent to

1√
n

n∑

i=1

I(θ0)−1 l̇θ0(Xi).

Then θ̂n is an asymptotically linear estimator of θ0 with the influence function I(θ0)−1l̇θ0 =
l̃(·, Pθ0|θ,P). This shows that θ̂n is the efficient estimator of θ0 and the asymptotic variance of√
n(θ̂n − θ0) attains the efficiency bound, which was defined in the previous chapter. Again,

the above arguments require a few conditions to go through.
As mentioned before, in the following sections we will rigorously prove the consistency and

the asymptotic efficiency of the maximum likelihood estimator. Moreover, we will discuss the
computation of the maximum likelihood estimators and some alternative efficient estimation
approaches.
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5.2 Consistency of Maximum Likelihood Estimator

We provide some sufficient conditions for obtaining the consistency of maximum likelihood
estimator.

Theorem 5.1 Suppose that
(a) Θ is compact.
(b) log pθ(x) is continuous in θ for all x.
(c) There exists a function F (x) such that Eθ0 [F (X)] <∞ and | log pθ(x)| ≤ F (x) for all x and
θ.
Then θ̂n →a.s. θ0. †

Proof For any sample ω ∈ Ω, θ̂n is compact. Thus, be choosing a subsequence, we assume
θ̂n → θ∗. Suppose we can show that

1

n

n∑

i=1

lθ̂n(Xi)→ Eθ0 [lθ∗(X)].

Then since
1

n

n∑

i=1

lθ̂n(Xi) ≥
1

n

n∑

i=1

lθ0(Xi),

we have
Eθ0 [lθ∗(X)] ≥ Eθ0[lθ0(X)].

Thus Proposition 5.1 plus the identifiability gives θ∗ = θ0. That is, any subsequence of θ̂n
converges to θ0. We conclude that θ̂n →a.s. θ0.

It remains to show

Pn[lθ̂n(X)] ≡ 1

n

n∑

i=1

lθ̂n(Xi)→ Eθ0 [lθ∗(X)].

Since
Eθ0 [lθ̂n(X)]→ Eθ0 [lθ∗(X)]

by the dominated convergence theorem, it suffices to show

|Pn[lθ̂n(X)]− Eθ0 [lθ̂n(X)]| → 0.

We can even prove the following uniform convergence result

sup
θ∈Θ
|Pn[lθ(X)]− Eθ0 [lθ(X)]| → 0.

To see this, we define
ψ(x, θ, ρ) = sup

|θ′−θ|<ρ
(lθ′(x)− Eθ0 [lθ′(X)]).

Since lθ is continuous, ψ(x, θ, ρ) is measurable and by the dominance convergence theorem,
Eθ0 [ψ(X, θ, ρ)] decreases to Eθ0 [lθ(x) − Eθ0 [lθ(X)]] = 0. Thus, for ε > 0, for any θ ∈ Θ, there
exists a ρθ such that

Eθ0[ψ(X, θ, ρθ)] < ε.
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The union of {θ′ : |θ′−θ| < ρθ} covers Θ. By the compactness of Θ, there exists a finite number
of θ1, ..., θm such that

Θ ⊂ ∪mi=1{θ′ : |θ′ − θi| < ρθi}.
Therefore,

sup
θ∈Θ
{Pn[lθ(X)]− Eθ0 [lθ(X)]} ≤ sup

1≤i≤m
Pn[ψ(X, θi, ρθi)].

We obtain

lim sup
n

sup
θ∈Θ
{Pn[lθ(X)]− Eθ0 [lθ(X)]} ≤ sup

1≤i≤m
Pθ[ψ(X, θi, ρθi)] ≤ ε.

Thus, lim supn supθ∈Θ {Pn[lθ(X)]− Eθ0[lθ(X)]} ≤ 0.We apply the similar arguments to {−l(X, θ)}
and obtain lim supn supθ∈Θ {−Pn[lθ(X)] + Eθ0 [lθ(X)]} ≤ 0. Thus,

lim
n

sup
θ∈Θ
|Pn[lθ(X)]− Eθ0 [lθ(X)]| → 0.

†

As a note, condition (c) in Theorem 5.1 is necessary. Ferguson (2002) page 116 gives an
interesting counterexample showing that if (c) is invalid, the maximum likelihood estimator
converges to a fixed constant whatever true parameter is.

Another type of consistency result is the classical Wald’s consistency result.

Theorem 5.2 (Wald’s Consistency) Θ is compact. Suppose θ 7→ lθ(x) = log pθ(x) is upper-
semicontinuous for all x, in the sense

lim sup
θ′→θ

lθ′(x) ≤ lθ(x).

Suppose for every sufficient small ball U ⊂ Θ,

Eθ0[sup
θ′∈U

lθ′(X)] <∞.

Then θ̂n →p θ0. †

Proof Since Eθ0[lθ0(X)] > Eθ0 [lθ′(X)] for any θ′ 6= θ0, there exists a ball Uθ′ containing θ′ such
that

Eθ0 [lθ0(X)] > Eθ0 [ sup
θ∗∈Uθ′

lθ∗(X)].

Otherwise, there exists a sequence θ∗m → θ′ but Eθ0 [lθ0(X)] ≤ Eθ0 [lθ∗m(X)]. Since lθ∗m(x) ≤
supU ′ lθ′(X) where U ′ is the ball satisfying the condition, we obtain

lim sup
m

Eθ0[lθ∗m(X)] ≤ Eθ0 [lim sup
m

lθ∗m(X)] ≤ Eθ0 [lθ′(X)].

We then obtain Eθ0 [lθ0(X)] ≤ Eθ0 [lθ′(X)] and this is a contradiction.
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For any ε, the balls ∪θ′Uθ′ covers the compact set Θ ∩ {|θ′− θ0| > ε} so there exists a finite
covering balls, U1, ..., Um. Then

P (|θ̂n− θ0| > ε) ≤ P ( sup
|θ′−θ0|>ε

Pn[lθ′(X)] ≥ Pn[lθ0(X)]) ≤ P ( max
1≤i≤m

Pn[ sup
θ′∈Ui

lθ′(X)] ≥ Pn[lθ0(X)])

≤
m∑

i=1

P (Pn[ sup
θ′∈Ui

lθ′(X)] ≥ Pn[lθ0(X)]).

Since
Pn[ sup

θ′∈Ui
lθ′(X)]→a.s. Eθ0 [ sup

θ′∈Ui
lθ′(X)] < Eθ0[lθ0(X)],

the right-hand side converges to zero. Thus, θ̂n →p θ0. †

5.3. Asymptotic Efficiency of Maximum Likelihood Esti-

mator

The following theorem gives some regular conditions so that the maximum likelihood estimator
attains asymptotic efficiency bound.

Theorem 5.3 Suppose that the model P = {Pθ : θ ∈ Θ} is Hellinger differentiable at an inner
point θ0 of Θ ⊂ Rk. Furthermore, suppose that there exists a measurable function F (X) with
Eθ0 [F (X)2] <∞ such that for every θ1 and θ2 in a neighborhood of θ0,

| log pθ1(x)− log pθ2(x)| ≤ F (x)|θ1 − θ2|.

If the Fisher information matrix I(θ0) is nonsingular and θ̂n is consistent, then

√
n(θ̂n − θ0) =

1√
n

n∑

i=1

I(θ0)−1 l̇θ0(Xi) + op(1).

In particular,
√
n(θ̂n − θ0) is asymptotically normal with mean zero and covariance matrix

I(θ0)−1.†

Proof For any hn → h, by the Hellinger differentiability,

Wn = 2

(√
pθ0+hn/

√
n

pθ0
− 1

)
→ h′ l̇θ0 , in L2(Pθ0).

We obtain √
n(log pθ0+hn/

√
n − log pθ0) = 2

√
n log(1 +Wn/2)→p h

′ l̇θ0 .

Using the Lipschitz continuity of log pθ and the dominate convergence theorem, we can show

Eθ0

[√
n(Pn − P )[

√
n(log pθ0+hn/

√
n − log pθ0)− h′l̇θ0 ]

]
→ 0
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and
V arθ0

[√
n(Pn − P )[

√
n(log pθ0+hn/

√
n − log pθ0)− h′l̇θ0 ]

]
→ 0.

Thus, √
n(Pn − P )[

√
n(log pθ0+hn/

√
n − log pθ0)− h′ l̇θ0]→p 0,

where
√
n(Pn − P )[g(X)] is defined as

n−1/2

[
n∑

i=1

{g(Xi)− Eθ0 [g(X)]}
]
.

From Step I in proving Theorem 4.4, we know

log

n∏

i=1

log pθ0+hn/
√
n

log pθ0
=

1√
n

n∑

i=1

h′ l̇θ0(Xi)−
1

2
h′I(θ0)h+ op(1).

We obtain
nEθ0 [log pθ0+hn/

√
n − log pθ0]→ −h′I(θ0)h/2.

Hence the map θ 7→ Eθ0 [log pθ] is twice-differentiable with second derivative matrix −I(θ0).
Furthermore, we obtain

nPn[log pθ0+hn/
√
n − log pθ0 ] = −1

2
h′nI(θ0)hn + h′n

√
n(Pn − P )[l̇θ0] + op(1).

We choose hn =
√
n(θ̂n − θ0) and hn = I(θ0)−1

√
n(Pn − P )[l̇θ0]. It gives that

nPn[log pθ̂n − log pθ0 ] = −n
2

(θ̂n − θ0)′I(θ0)(θ̂ − θ0) +
√
n(θ̂n − θ0)

√
n(Pn − P )[l̇θ0] + op(1),

nPn[log pθ0+I(θ0)−1
√
n(Pn−P )[l̇θ0 ]/

√
n − log pθ0]

=
1

2
{√n(Pn − P )[l̇θ0]}′I(θ0)−1{√n(Pn − P )[l̇θ0]}+ op(1).

Since the left-hand side of the fist equation is larger than the left-hand side of the second
equation, after simple algebra, we obtain

−1

2

{√
n(θ̂n − θ0)− I(θ0)−1

√
n(Pn − P )[l̇θ0]

}′
I(θ0)

{√
n(θ̂n − θ0)− I(θ0)−1

√
n(Pn − P )[l̇θ0]

}

+op(1) ≥ 0.

Thus, √
n(θ̂n − θ0) = I(θ0)−1

√
n(Pn − P )[l̇θ0] + op(1).

†

A classical condition for the asymptotic normality for
√
n(θ̂n− θ0) is the following theorem.

Theorem 5.4 For each θ in an open subset of Euclidean space. Let θ 7→ l̇θ(x) = log pθ(x)
be twice continuously differentiable for every x. Suppose Eθ0 [l̇θ0 l̇

′
θ0

] < ∞ and E[l̈θ0 ] exists and
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is nonsingular. Assume that the second partial derivative of l̇θ(x) is dominated by a fixed
integrable function F (x) for every θ in a neighborhood of θ0. Suppose θ̂n →p θ0. Then

√
n(θ̂n − θ0) = −(Eθ0 [l̈θ0])

−1 1√
n

n∑

i=1

l̇θ0(Xi) + op(1).

†

Proof θ̂n solves the equation

0 =

n∑

i=1

l̇θ̂(Xi).

After the Taylor expansion, we obtain

0 =

n∑

i=1

l̇θ0(Xi) +

n∑

i=1

l̈θ0(Xi)(θ̂n − θ0) +
1

2
(θ̂n − θ0)′

{
n∑

i=1

l
(3)

θ̃n
(Xi)

}
(θ̂n − θ0),

where θ̃n is between θ̂n and θ0. Thus,

|
{

1

n

n∑

i=1

l̈θ0(Xi)

}
(θ̂n − θ0) +

1

n

n∑

i=1

l̇θ0(Xi)| ≤
1

n

n∑

i=1

|F (Xi)||θ̂n − θ0|2.

We obtain (θ̂n − θ0) = op(1/
√
n). Then it holds

√
n(θ̂n − θ0)

{
1

n

n∑

i=1

l̈θ0(Xi) + op(1)

}
= − 1√

n

n∑

i=1

lθ0(Xi).

The result holds. † .

5.4 Computation of Maximum Likelihood Estimate

A variety of methods can be used to compute the maximum likelihood estimate. Since the
maximum likelihood estimate, θ̂n, solves the likelihood equation

n∑

i=1

l̇θ(Xi) = 0,

one numerical method for the calculation is via the Newton-Raphson iteration: at kth iteration,

θ(k+1) = θ(k) −
{

1

n

n∑

i=1

l̈θ(k)(Xi)

}−1{
1

n

n∑

i=1

l̇θ(k)(Xi)

}
.

Sometimes, calculating l̈θ may be complicated. Note the

− 1

n

n∑

i=1

l̈θ(k)(Xi) ≈ I(θ(k)).
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Then a Fisher scoring algorithm is via the following iteration

θ(k+1) = θ(k) + I(θ(k))−1

{
1

n

n∑

i=1

l̇θ(k)(Xi)

}
.

An alternative method to find the maximum likelihood estimate is by optimum search algo-
rithm. Note that the objective function is Ln(θ). Then a simple search method is grid search
by evaluating the Ln(θ) along a number of θ’s in the parameter space. Clearly, such a method
is only feasible with very low-dimensional θ. Other efficient methods include quasi-Newton
search (gradient-decent search) where at each θ, we search along the direction of L̇n(θ). Re-
cent development has seen many Bayesian computation methods, including MCMC, simulation
annealing etc.

In this section, we particularly focus on the calculation of the maximum likelihood estimate
when part of data are missing or some mis-measured data are observed. In such calculation,
a useful algorithm is called the expectation-maximization (EM) algorithm. We will describe
this algorithm in detail and explain why the EM algorithm may give the maximum likelihood
estimate. A few examples are given for illustration.

5.4.1 EM framework

Suppose Y denotes the vector of statistics from n subjects. In many practical problems, Y
can not be fully observed due to data missingness; instead, partial data or a function of Y is
observed. For simplicity, suppose Y = (Ymis, Yobs), where Yobs is the part of Y which is observed
and Ymis is the part of Y which is not observed. Furthermore, we introduce R as a vector of 0/1
indicating which subjects are missing/not missing. Then the observed data include (Yobs, R).

Assume Y has a density function f(Y ; θ) where θ ∈ Θ. Then the density function for the
observed data (Yobs, R) ∫

Ymis

f(Y ; θ)P (R|Y )dYmis,

where P (R|Y ) denotes the conditional probability of R given Y . One additional assumption
is that P (R|Y ) = P (R|Yobs) and P (R|Y ) does not depend on θ; i.e., the missing probability
only depends on the observed data and it is non-informative about θ. Such an assumption is
called the missing at random (MAR) and is often assumed for missing data problem. Under
the MAR, the density function for the observed data is equal

∫

Ymis

f(Y ; θ)dYmisP (R|Y ).

Hence, if we wish to calculate the maximum likelihood estimator for θ, we can ignore the part
of P (R|Y ) but simply maximize the part of

∫
Ymis

f(Y ; θ)dYmis. Note the latter is exactly the
marginal density of Yobs, denoted by f(Yobs; θ).

The way of the EM algorithm is as follows: we start from any initial value of θ(1) and use
the following iterations. The kth iteration consists both E-step and M-step:

E-step. We evaluate the conditional expectation

E
[
log f(Y ; θ)|Yobs, θ(k)

]
.
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Here, E[·|Yobs, θk] is the conditional expectation given the observed data and the current value
of θ. That is,

E
[
log f(Y ; θ)|Yobs, θ(k)

]
=

∫
Ymis

[log f(Y ; θ)]f(Y ; θ(k))dYmis∫
Ymis

f(Y ; θ(k))dYmis
.

Such an expectation can often be evaluated using simple numerical calculation, as will be seen
in the later examples.

M-step. We obtain θ(k+1) by maximizing

E
[
log f(Y ; θ)|Yobs, θ(k)

]
.

We then iterate till the convergence of θ; i.e., the difference between θ(k+1) and θ(k) is less than
a given criteria.

The reason why the EM algorithm may give the maximum likelihood estimator is the fol-
lowing result.

Theorem 5.5 At each iteration of the EM algorithm, log f(Yobs; θ
(k+1)) ≥ log f(Yobs; θ

(k)) and
the equality holds if and only if θ(k+1) = θ(k). †

Proof From the EM algorithm, we see

E
[
log f(Y ; θ(k+1))|Yobs, θ(k)

]
≥ E

[
log f(Y ; θ(k))|Yobs, θ(k)

]
.

Since
log f(Y ; θ) = log f(Yobs; θ) + log f(Ymis|Yobs, θ),

we obtain
E
[
log f(Ymis|Yobs, θ(k+1))|Yobs, θ(k)

]
+ log f(Yobs; θ

(k+1))

≥ E
[
log f(Ymis|Yobs, θ(k))|Yobs, θ(k)

]
+ log f(Yobs; θ

(k)).

On the other hand, since

E
[
log f(Ymis|Yobs, θ(k+1))|Yobs, θ(k)

]
≤ E

[
log f(Ymis|Yobs, θ(k))|Yobs, θ(k)

]

by the non-negativity of the Kullback-Leibler information, we conclude that log f(Yobs; θ
(k+1)) ≥

log f(Yobs, θ
(k)). The equality implies

log f(Ymis|Yobs, θ(k+1)) = log f(Ymis|Yobs, θ(k)),

and hence log f(Y ; θ(k+1)) = log f(Y ; θ(k)), thus θ(k+1) = θ(k). †

From Theorem 5.5, we conclude that each iteration of the EM algorithm increases the
observed likelihood function. Thus, it is expected that θ(k) will eventually converge to the
maximum likelihood estimate. If the initial value of the EM algorithm is chosen close to the
maximum likelihood estimate (though we never know) and the objective function is concave in
the neighborhood of the maximum likelihood estimate, then the maximization in the M-step
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can be replaced by the Newton-Raphson iteration. Correspondingly, an alternative way to the
EM algorithm is given by:

E-step. We evaluate the conditional expectation

E

[
∂

∂θ
log f(Y ; θ)|Yobs, θ(k)

]

and

E

[
∂2

∂θ2
log f(Y ; θ)|Yobs, θ(k)

]

M-step. We obtain θ(k+1) by solving

0 = E

[
∂

∂θ
log f(Y ; θ)|Yobs, θ(k)

]

using one-step Newton-Raphson iteration:

θ(k+1) = θ(k) −
{
E

[
∂2

∂θ2
log f(Y ; θ)|Yobs, θ(k)

]}−1

E

[
∂

∂θ
log f(Y ; θ)|Yobs, θ(k)

]∣∣∣∣∣
θ=θ(k)

.

We note that in the second form of the EM algorithm, only one-step Newton-Raphson iteration
is used in the M-step since it still ensures that the iteration will increase the likelihood function.

5.4.2 Examples of using EM algorithm

Example 5.1 Suppose a random vector Y has a multinomial distribution with n = 197 and

p = (
1

2
+
θ

4
,
1− θ

4
,
1− θ

4
,
θ

4
).

Then the probability for Y = (y1, y2, y3, y4) is given by

n!

y1!y2!y3!y4!
(
1

2
+
θ

4
)y1(

1− θ
4

)y2(
1− θ

4
)y3(

θ

4
)y4.

If we use the Newton-Raphson iteration to calculate the maximum likelihood estimator for
θ, then after calculating the first and the second derivative of the log-likelihood function, we
iterate using

θ(k+1) = θ(k) +

{
Y1

1/16

(1/2 + θ(k)/4)2
+ (Y2 + Y3)

1

(1− θ(k))2
+ Y4

1

θ(k)2

}−1

×
{
Y1

1/4

1/2 + θ(k)/4
− (Y2 + Y3)

1

1− θ(k)
+ Y4

1

θ(k)

}
.

Suppose we observe Y = (125, 18, 20, 34). If we start with θ(1) = 0.5, after the convergence, we
obtain θ(k) = 0.6268215. We can use the EM algorithm to calculate the maximum likelihood



MAXIMUM LIKELIHOOD ESTIMATION 118

estimator. Suppose the full data is X which has a multivariate normal distribution with n and
the p = (1/2, θ/4, (1− θ)/4, (1 − θ)/4, θ/4). Then Y can be treated as an incomplete data of
X by Y = (X1 +X2, X3, X4, X5). The score equation for the complete data X is simple

0 =
X2 +X5

θ
− X3 +X4

1− θ .

Thus we note the M-step of the EM algorithm needs to solve the equation

0 = E

[
X2 +X5

θ
− X3 +X4

1− θ |Y, θ
(k)

]
;

while the E-step evaluates the above expectation. By simple calculation,

E[X|Y, θ(k)] = (Y1
1/2

1/2 + θ(k)/4
, Y1

θ(k)/4

1/2 + θ(k)/4
, Y2, Y3, Y4).

Then we obtain

θ(k+1) =
E[X2 +X5|Y, θ(k)]

E[X2 +X5 +X3 +X4|Y, θ(k)]
=

Y1
θ(k)/4

1/2+θ(k)/4
+ Y4

Y1
θ(k)/4

1/2+θ(k)/4
+ Y2 + Y3 + Y4

.

We start form θ(1) = 0.5. The following table gives the results from iterations:

k θ(k+1) θ(k+1) − θ(k) θ(k+1)−θ̂n
θ(k)−θ̂n

0 .500000000 .126821498 .1465
1 .608247423 .018574075 .1346
2 .624321051 .002500447 .1330
3 .626488879 .000332619 .1328
4 .626777323 .000044176 .1328
5 .626815632 .000005866 .1328
6 .626820719 .000000779
7 .626821395 .000000104
8 .626821484 .000000014

From the table, we find the EM converges and the result agrees with what is obtained form the
Newton-Raphson iteration. We also note the the convergence is linear as (θ(k+1) − θ̂n)/(θ(k) − θ̂n)
becomes a constant when convergence; comparatively, the convergence in the Newton-Raphson
iteration is quadratic in the sense (θ(k+1) − θ̂n)/(θ(k) − θ̂n)2 becomes a constant when conver-
gence. Thus, the Newton-Raphon iteration converges much faster than the EM algorithm;
however, we have already seen the calculation of the EM is much less complex than the Newton-
Raphson iteration and this is the advantage of using the EM algorithm.

Example 5.2 We consider the example of exponential mixture model. Suppose Y ∼ Pθ where
Pθ has density

pθ(y) =
{
pλe−λy + (1− p)µe−µy

}
I(y > 0)

and θ = (p, λ, µ) ∈ (0, 1) × (0,∞) × (0,∞). Consider estimation of θ based on Y1, ..., Yn
i.i.d pθ(y). Solving the likelihood equation using the Newton-Raphson is much computation
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involved. We take an approach based on the EM algorithm. We introduce the complete data
X = (Y,∆) ∼ pθ(x) where

pθ(x) = pθ(y, δ) = (pye−λy)δ((1− p)µe−µy)1−δ.

This is natural from the following mechanism: ∆ is a Bernoulli variable with P (∆ = 1) = p
and we generate Y from Exp(λ) if ∆ = 1 and from Exp(µ) if ∆ = 0. Thus, ∆ is missing. The
score equation for θ based on X is equal to

0 = l̇p(X1, ..., Xn) =
n∑

i=1

{
∆i

p
− 1−∆i

1− p

}
,

0 = l̇λ(X1, ..., Xn) =
n∑

i=1

∆i(
1

λ
− Yi),

0 = l̇µ(X1, ..., Xn) =

n∑

i=1

(1−∆i)(
1

µ
− Yi).

Thus, the M-step of the EM algorithm is to solve the following equations

0 =
n∑

i=1

E

[{
∆i

p
− 1−∆i

1− p

}
|Y1, ..., Yn, p

(k), λ(k), µ(k)

]
=

n∑

i=1

E

[{
∆i

p
− 1−∆i

1− p

}
|Yi, p(k), λ(k), µ(k)

]
,

0 =
n∑

i=1

E

[
∆i(

1

λ
− Yi)|Y1, ..., Yn, p

(k), λ(k), µ(k)

]
=

n∑

i=1

E

[
∆i(

1

λ
− Yi)|Yi, p(k), λ(k), µ(k)

]
,

0 =

n∑

i=1

E

[
(1−∆i)(

1

µ
− Yi)|Y1, ..., Yn, p

(k), λ(k), µ(k)

]
=

n∑

i=1

E

[
(1−∆i)(

1

µ
− Yi)|Yi, p(k), λ(k), µ(k)

]
.

This immediately gives

p(k+1) =
1

n

n∑

i=1

E[∆i|Yi, p(k), λ(k), µ(k)],

λ(k+1) =

∑n
i=1 E[∆i|Yi, p(k), λ(k), µ(k)]∑n
i=1 YiE[∆i|Yi, p(k), λ(k), µ(k)]

,

µ(k+1) =

∑n
i=1 E[(1−∆i)|Yi, p(k), λ(k), µ(k)]∑n
i=1 YiE[(1−∆i)|Yi, p(k), λ(k), µ(k)]

.

The conditional expectation

E[∆|Y, θ] =
pλe−λY

pλe−λY + (1− p)µe−µY .

As seen above, the EM algorithm facilitates the computation.
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5.4.3 Information calculation in EM algorithm

We now consider the information of θ in the missing data. Denote l̇c as the score function
for θ in the full data and denote l̇mis|obs as the score for θ in the conditional distribution of

Ymis given Yobs and l̇obs as the the score for θ in the distribution of Yobs. Then it is clear that
l̇c = l̇mis|obs + l̇obs. Using the formula

V ar(U) = V ar(E[U |V ]) + E[V ar(U |V )],

we obtain
V ar(l̇c) = V ar(E[l̇c|Yobs]) + E[V ar(l̇c|Yobs)].

Since
E[l̇c|Yobs] = l̇obs + E[l̇mis|obs|Yobs] = l̇obs

and
V ar(l̇c|Yobs) = V ar(l̇mis|obs|Yobs),

we obtain
V ar(l̇c) = V ar(l̇obs) + E[V ar(l̇mis|obs|Yobs)].

Note that V ar(l̇c) is the information for θ based the complete data Y , denote by Ic(θ),
V ar(l̇obs) is the information for θ based on the observed data Yobs, denote by Iobs(θ), and
the V ar(l̇mis|obs|Yobs) is the conditional information for θ based on Ymis given Yobs, denoted by
Imis|obs(θ;Yobs). We obtain the following Louis formula

Ic(θ) = Iobs(θ) + E[Imis|obs(θ, Yobs)].

Thus, the complete information is the summation of the observed information and the missing
information. One can even show when the EM converges, the convergence linear rate, denote
as (θ(k+1) − θ̂n)/(θ(k) − θ̂n) approximates the 1− Iobs(θ̂n)/Ic(θ̂n).

The EM algorithms can be applied to not only missing data but also data with measurement
error. Recently, the algorithms have been extended to the estimation in missing data in many
semiparametric models.

5.5 Nonparametric Maximum Likelihood Estimation

In the previous section, we have studied the maximum likelihood estimation for parametric
models. The maximum likelihood estimation can also be applied to many semiparametric or
nonparametric models and this approach has been received more and more attention in recent
years. We illustrate through some examples how such an estimation approach is used in the
semiparametric or nonparametric model. Since obtaining the consistency and the asymptotic
properties of the maximum likelihood estimators require both advanced probability theory in
metric space and semiparametric efficiency theory, we would rather not get into details of these
theories.

Example 5.3 Let X1, ..., Xn be i.i.d random variables with common distribution F , where F
is any unknown distribution function. One may be interested in estimating F . This model is
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a nonparametric model. We consider maximizing the likelihood function to estimate F . The
likelihood function for F is given by

Ln(F ) =
n∏

i=1

f(Xi),

where f(Xi) is the density function of F with respect to some dominating measure. However,
the maximum of Ln(F ) does not exists since one can always choose a continuous f such that
f(X1)→∞. To avoid this problem, instead, we maximize an alternative function

L̃n(F ) =

n∏

i=1

F{Xi},

where F{Xi} denotes the value F (Xi)−F (Xi−). It is clear that L̃n(F ) ≤ 1 and if F̂n maximizes
L̃n(F ), F̂n must be a distribution function with point masses only at X1, ..., Xn. We denote
qi = F{Xi} and qi = qj if Xi = Xj. Then maximizing L̃n(F ) is equivalent to maximizing

n∏

i=1

qi subject to
∑

distinct qi

qi = 1.

The maximization with the Lagrange-Multiplier gives that

qi =
1

n

n∑

j=1

I(Xj = Xi).

Then

F̂ (x) =
1

n

n∑

i=1

I(Xn ≤ x) = Fn(x).

In other words, the maximum likelihood estimator for F is the empirical distribution function
Fn. It can be shown that Fn converges to F almost surely uniformly in x and

√
n(Fn − F )

converges in distribution to a Brownian bridge process. Fn is called the nonparametric maximum
likelihood estimator of F .

Example 5.4 Suppose X1, ..., Xn are i.i.d F and Y1, ..., Yn are i.i.d G. We observe i.i.d pairs
(Z1,∆1), ..., (Zn,∆n), where Zi = min(Xi, Yi) and ∆i = I(Xi ≤ Yi). We consider Xi as survival
time and Yi as censoring time. Then it is easy to calculate the joint distributions for (Zi,∆i),
i = 1, ..., n, is equal to

Ln(F,G) =
n∏

i=1

{f(Zi)(1−G(Zi))}∆i {(1− F (Zi))g(Zi)}1−∆i .

Similarly, Ln(F,G) does not have the maximum so we consider an alternative function

L̃n(F,G) =

n∏

i=1

{F{Zi}(1−G(Zi))}∆i {(1− F (Zi))G{Zi}}1−∆i .
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L̃n(F,G) ≤ 1 and maximizing L̃n(F,G) is equivalent to maximizing

n∏

i=1

{pi(1−Qi)}∆i {qi(1− Pi)}1−∆i ,

subject to the constraint
∑

i pi =
∑

j qj = 1, where pi = F{Zi}, qi = G{Zi}, and Pi =∑
Yj≤Yi pj, Qi =

∑
Yj≤Yi qj. However, this maximization may not be easy. Instead, we will take

a different approach by considering a new parameterization. Define the hazard functions λX(t)
and λY (t) as

λX(t) = f(t)/(1− F (t−)), λY (t) = g(t)/(1−G(t−))

and the cumulative hazard functions ΛX(t) and ΛY (t) as

ΛX(t) =

∫ t

0

λX(s)ds, ΛY (t) =

∫ t

0

λY (s)ds.

The derivation of F and G from ΛX and ΛY is based on the following product-limit form:

1− F (t) =
∏

s≤t
(1− dΛX) ≡ lim

maxmi=1 |ti−ti−1|→0

∏

0=t0<t1<...<tm=t

{1− (ΛX(ti)− ΛX(ti−1))},

1−G(t) =
∏

s≤t
(1− dΛY ) ≡ lim

maxmi=1 |ti−ti−1|→0

∏

0=t0<t1<...<tm=t

{1− (ΛY (ti)− ΛY (ti−1))}.

Under the new parameterization, the likelihood function for (Zi,∆i), i = 1, ..., n, is given by

n∏

i=1

[
λX(Zi)

∆i exp{−ΛX(Zi)}λY (Zi)
1−∆i exp{−ΛY (Zi)}

]
.

Again, we maximize a modified function

n∏

i=1

[
ΛX{Zi}∆i exp{−ΛX(Zi)}ΛY {Zi}1−∆i exp{−ΛY (Zi)}

]
,

where ΛX{Zi} and ΛY {Zi} are the jump sizes of ΛX and ΛY at Zi. The maximization becomes
maximizing

n∏

i=1

[
a∆i
i exp{−Ai}b1−∆i

i exp{−Bi}
]
,

where Ai =
∑

Zj≤Zi aj and Bi =
∑

Zj≤Zi bj. Simple calculation gives that

ai =
∆i

Ri
, bi =

(1−∆i)

Ri
, Ri =

∑

Yj≥Yi
1.

Thus, the NPMLE’s for ΛX and ΛY are given by

Λ̂X(t) =
∑

Yi≤t

∆i

Ri
, Λ̂Y (t) =

∑

Yi≤t

1−∆i

Ri
.
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As a result of the product-limit formula, we obtain the NPMLE’s for F and G are

F̂n = 1−
∏

Yi≤t

{
1− ∆i

Ri

}
, Ĝn = 1−

∏

Yi≤t

{
1− 1−∆i

Ri

}
.

Both 1 − F̂n and 1 − Ĝn are called the Kaplan-Meier estimates of the survival functions for
the survival time and the censoring time respectively. The results based on counting process
theory show that F̂n and Ĝn are uniformly consistent and both

√
n(F̂n − F ) and

√
n(Ĝn −G)

are asymptotically Gaussian.

Example 5.5 Suppose T is survival time and Z is covariate. Assume that the conditional
distribution of T given Z has a conditional hazard function

λ(t|Z) = λ(t)eθ
′Z.

Then the likelihood function from n i.i.d (Ti, Zi), i = 1, ..., n is given by

Ln(θ,Λ) =
n∏

i=1

{
λ(Ti) exp{−Λ(Ti)e

θ′Zi}f(Zi)
}
.

Note f(Zi) is not informative about θ and λ so we can discard it from the likelihood function.
Again, we replace λ{Ti} by Λ{Ti} and obtain a modified function

L̃n(θ,Λ) =

n∏

i=1

{
Λ{Ti} exp{−Λ(Ti)e

θ′Zi}
}
.

Let pi = Λ{Ti} we maximize

n∏

i=1



pi exp{−(

∑

Yj≤Yi
pj)e

θ′Zi}





or its logarithm as
n∑

i=1



θ
′Zi − exp{θ′Zi}

∑

Yj≤Yi
pj + log pj



 .

We obtain

p̂i =
1∑

Yj≥Yi exp{θ′Zj}

by differentiating with respect to pi. After substituting it back into the log L̃n(θ,Λ), we find θ̂n
maximizes the function

log

{
n∏

i=1

exp{θ′Zi}∑
Yj≥Yi exp{θ′Zj}

}
.

The function inside the logarithm is called the Cox’s partial likelihood for θ. The consistency
and the asymptotic efficiency for θ̂n have been well studied since the Cox (1972) proposed this
estimation, with help from the martingale process theory.
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Example 5.6 We consider X1, ..., Xn are i.i.d F and Y1, ..., Yn are i.i.d G. We only observe
(Yi,∆i) where ∆i = I(Xi ≤ Yi) for i = 1, ..., n. This data is one type of interval censored data
(or current status data). The likelihood for the observations is

n∏

i=1

{
F (Yi)

∆i(1− F (Yi))
1−∆ig(Yi)

}
.

To derive the NPMLE for F and G, we instead maximize

n∏

i=1

{
P∆i
i (1− Pi)1−∆iqi

}
,

subject to the constraint that
∑
qi = 1 and 0 ≤ Pi ≤ 1 increases with Yi. Clearly, q̂i = 1/n

(suppose Yi are all different). This constrained maximization turns out to be solved by the
following steps:
(i) Plot the points (i,

∑
Yj≤Yi ∆j), i = 1, ..., n. This is called the cumulative sum diagram.

(ii) Form the H∗(t), the greatest the convex minorant of the cumulative sum diagram.
(iii) Let P̂i be the left derivative of H∗ at i.
Then (P̂1, ..., P̂n) maximizes the object function. Groeneboom and Wellner (1992) shows that
if f(t), g(t) > 0,

n1/3(F̂n(t)− F (t))→d

(
F (t)(1− F (t))f(t)

2g(t)

)1/3

(2Z),

where Z is the location the maximum of the process {B(t)− t2 : t ∈ R} where B(t) is standard
Brownian motion starting from 0.

In summary, the NPMLE is a generalization of the maximum likelihood estimation to the
semiparametric or nonparametric models. We have seen that in such a generalization, we often
replace the functional parameter by an empirical function with jumps only at observed data
and maximize a modified likelihood function. However, both computation of the NPMLE and
the asymptotic property of the NPMLE can be difficult and vary for different specific problems.

5.6 Alternative Efficient Estimation

Although the maximum likelihood estimation is the most popular way of obtaining an asymp-
totically efficient estimator, there are alternative ways of deriving efficient estimation. Among
them, one-step efficient estimation is the simplest.

In one-step efficient estimation, we assume that a strongly consistent estimator for parameter
θ, denoted by θ̃n, is given. Moreover |θ̃n − θ0| = Op(n

−1/2). One-step procedure is essentially a
one-step Newton-Raphson iteration in solving the likelihood score equation; that is, we define

θ̂n = θ̃n −
{
l̈n(θ̃n)

}−1

l̇n(θ̃n),

where l̇n(θ) is the sore function of the observed log-likelihood function and l̈n(θ) is the derivative
of l̇n(θ). The next theorem shows that θ̂n is an asymptotically efficient estimator.
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Theorem 5.6 Let lθ(X) be the log-likelihood function of θ. Assume that there exists a neigh-

borhood of θ0 such that in this neighborhood, |l(3)
θ (X)| ≤ F (X) with E[F (X)] <∞. Then

√
n(θ̂n − θ0)→d N(0, I(θ0)−1),

where I(θ0) is the Fisher information. †

Proof Since θ̃n →a.s. θ0, we perform the Taylor expansion on the right-hand side of the one-step
equation and obtain

θ̂n = θ̃n −
{
l̈n(θ̃n)

}{
l̇n(θ0) + l̈n(θ∗)(θ̃n − θ0)

}

where θ∗ is between θ̃n and θ0. Therefore,

θ̂n − θ0 =

[
I −

{
l̈n(θ̃n)

}−1

l̈n(θ∗)

]
(θ̃n − θ0)−

{
l̈n(θ̃n)

}
l̇n(θ0).

On the other hand, by the condition that |l(3)
θ (X)| ≤ F (X) with E[F (X)] <∞, we know

1

n
l̈n(θ∗)→a.s. E[l̈θ0(X)],

1

n
l̈n(θ̃n)→a.s. E[l̈θ0(X)].

Thus,

θ̂n − θ0 = op(|θ̃n − θ0|)−
{
E[l̈θ0(X)] + op(1)

}−1 1

n
l̇n(θ0)

so √
n(θ̂n − θ0) = op(1)−

{
E[l̈θ0(X)] + op(1)

}−1 1√
n
l̇n(θ0)→d N(0, I(θ0)−1).

We have proved that θ̂n is asymptotically efficient. †

Remark 5.1 Many different conditions from Theorem 5.6 can be used to ensure the asymp-
totic efficiency of θ̂n and here we have presented a simple one. Additionally, in the one-step
estimation, since l̈n(θ̃n) approximates −I(θ0) and the latter can be estimated by −I(θ̃n), we
sometimes use a slightly different one-step update:

θ̂n = θ̃n + I(θ̃n)−1 l̇(θ̃n).

One can recognize that this estimation is in fact one-step iteration in the Fisher scoring algo-
rithm. Another efficient estimation arises from the Bayesian estimation method, where it can
be shown that under regular condition of prior distribution, the posterior mode is equivalent
to the maximum likelihood estimator. We will not pursue this method here.

In summary, efficient estimation is one of the most important goals in statistical inference.
The maximum likelihood approach provides a natural and simple way of deriving an efficient
estimator. However, when the maximum likelihood approach is not feasible, for example, the
maximum likelihood estimator does not exist or the computation is difficult, other estimation
approaches may be considered such as one-step estimation, Bayesian estimation etc. So far,
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we only focus on parametric models. When model is given semiparametrically or nonpara-
metrically, the maximum likelihood estimator or the Bayesian estimator usually does not exist
because of the presence of some infinite dimensional parameters. In this case, some approxi-
mated likelihood approaches have been developed, one of which is the nonparametric maximum
likelihood approach (sometimes called empirical likelihood approach) as given in Section 5.5.
Other approaches include partial likelihood approach, sieve likelihood approach, and penalized
likelihood approach etc. These topics need another full text to describe and will be deferred to
some future course.

READING MATERIALS: You should read Ferguson, Sections 16-20, Lehmann and Casella,
Sections 6.2-6.7

PROBLEMS

We need the following definitions to answer the given problems.

Definition 5.2. {Tn} and {T̃n} are two sequences of estimators for θ. Suppose
√
n(Tn − θ)→d N(0, σ2),

√
n(T̃n − θ)→d N(0, σ̃2).

The asymptotic relative efficiency (ARE) of {Tn} with respect to {T̃n} is defined as r = σ̃2/σ2.
Intuitively, r can be understood as: to achieve the same accuracy in estimating θ, using the
estimator Tn needs approximately 1/r times as many observations as using the estimator T̃n.
Thus, if r > 1, Tn is more efficient than T̃n; vice versa.

Definition 5.3. If δ0 and δ1 are statistics, then the random interval (δ0, δ1) is called a (1−α)-
confidence interval for g(θ) if

Pθ(g(θ) ∈ (δ0, δ1)) ≥ 1− α.
Intuitively, the above inequality says: however data are generated, there is at least (1 − α)
probability that the interval contains the true value g(θ). Also, a random set S constructed
from data is called a (1− α)-confidence region for g(θ) if

Pθ(g(θ) ∈ S) ≥ 1− α.

If (δ0, δ1) and S change with sample size n and the above inequalities hold at the limit, then
(δ0, δ1) and S are approximately (1− α)-confidence interval and confidence region respectively.

1. Suppose that (X1, Y1),...,(Xn, Yn) are i.i.d. with bivariate normal distribution N2(µ,Σ)
where µ = (µ1, µ2)

′ ∈ R2 and

Σ =

(
σ2 στρ
στρ τ 2

)

where σ2 > 0, τ 2 > 0, and ρ ∈ (−1, 1).
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(a) If we assume that µ1 = µ2 = θ and Σ is known, what is the maximum likelihood
estimator of θ?

(b) If we assume that µ is known and σ2 = τ 2 = θ, what is the maximum likelihood
estimator of (θ, ρ)?

(c) What is the asymptotic distribution of the estimator you found in (b)?

2. Let X1, ..., Xn be i.i.d. with common density

fθ(x) =
θ

(1 + x)θ+1
I(x > 0), θ > 0.

(a) Find the maximum likelihood estimator of θ, denoted as θ̂n. Give the limit distribu-
tion of

√
n(θ̂n − θ).

(b) Find a function g such that, regardless the value of θ,
√
n(g(θ̂n)− g(θ))→d N(0, 1).

(c) Construct an approximately 1− α confidence interval based on (b).

3. Suppose X has a standard exponential distribution with density f(x) = e−xI(x > 0).
Given X = x, Y has a Poisson distribution with mean λx.

(a) Determine the marginal mass function of Y . Find E[Y ] and V ar(Y ) without using
the mass function of Y .

(b) Give a lower bound for the variance of an unbiased estimator of λ based on X and
Y .

(c) Suppose (X1, Y1), ..., (Xn, Yn) are i.i.d., with each pair having the same joint distri-
bution as X and Y . Let λ̂n be the maximum likelihood estimator based on these
data, and let λ̃n be the maximum likelihood estimator based on Y1, ..., Yn. Determine
the asymptotic relative efficiency of λ̃n with respect to λ̂n.

4. Suppose that X1, ..., Xn are i.i.d. with density function pθ(x), θ ∈ Θ ⊂ Rk. Denote
lθ(x) = log pθ(x). Assume lθ(x) is three times differentiable with respect to θ and its third
derivatives are bounded by M(x), where supθ Eθ[M(X)] < ∞. Let θ̂n be the maximum
likelihood estimator of θ and assume

√
n(θ̂n − θ) →d N(0, I−1

θ ), where Iθ denotes the
Fisher information at θ and is assumed to be non-singular.

(a) To estimate the asymptotic variance of
√
n(θ̂n − θ), one proposes an estimator Î−1

n ,
where

În = − 1

n

n∑

i=1

l̈θ̂n(Xi).

Prove that Î−1
n is a consistent estimator of I−1

θ .

(b) Show √
nÎ1/2

n (θ̂n − θ)→d N(0, Ik×k),

where Î
1/2
n is the square root matrix of În and Ik×k is k-by-k identity matrix. From

this approximation, construct an approximate (1− α)-confidence region for θ.
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(c) Let ln(θ) =
∑n

i=1 lθ(Xi). Perform Taylor expansion on −2(ln(θ) − ln(θ̂n)) (called

likelihood ratio statistic) at θ̂n and show

−2(ln(θ)− ln(θ̂n))→d χ
2
k.

From this result, construct an approximate 1− α confidence region for θ.

5. Human beings can be classified into one of four blood groups (phenotypes) O,A,B,AB. The
inheritance of blood groups is controlled by three genes, O, A, B, of which O is recessive
to A and B. If r, p, q are the gene probabilities in the population of O,A,B respectively
(r + p+ q = 1), the probabilities of the six possible combinations (genotypes) in random
mating (where two individuals draw at random from the population contribute one gene
each) are shown in the following tables:

Phenotype Genotype probability
O OO r2

A AA p2

A AO 2rp
B BB q2

B BO 2rq
AB AB 2pq

We observe among N individuals that the phenotype frequencies NO, NA, NB, NAB and
wish to estimate the gene probabilities from such data. A simple approach is to regard the
observations as incomplete, the complete data set being the genotype frequencies NOO,
NAA, NAO, NBB , NBO, NAB .

(a) Derive the EM algorithm for estimation of (p, q, r).

(b) Suppose that we observe NO = 176, NA = 182, NB = 60, NAB = 17. Use the EM
algorithm to calculate the maximum likelihood estimator of (p, q, r), with starting
value p = q = r = 1/3 and stopping iteration once the maximal difference between
the new estimates and the previous one is less than 10−4.

6. Suppose that X has a density function f(x) and given X = x, Y ∼ N(βx, σ2). Let
(X1, Y1), ..., (Xn, Yn) be i.i.d. observations with the same distribution as (X, Y ). However,
in many applications, not all X’s are observable and we assume that Xm+1, ..., Xn are
missing for some 1 < m < n and that the missingness satisfies MAR assumption. Then
the observed likelihood function is

m∏

i=1

[
f(Xi)

1√
2πσ2

exp{−(Yi − βXi)
2

2σ2
}
]
×

n∏

i=m+1

∫

x

[
f(x)

1√
2πσ2

exp{−(Yi − βx)2

2σ2
}
]
dx.

Suppose that the observed values for X’s are distinct. We want to calculate the NPMLE
for β and σ2. To do that, we “assume” that X only has point mass pi > 0 at the observed
data Xi = xi for i = 1, ..., m.

(a) Rewrite the likelihood function using β, σ2 and p1, ..., pm.
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(b) Write out the score equations for all the parameters.

(c) A simple approach to calculate the NPMLE is to use the EM algorithm, where
Xm+1, ..., Xn are missing data. Derive the EM algorithm. Hint: Xi, i = m+ 1, ..., n,
can only have values x1, ..., xm with probabilities p1, ..., pm.

7. Ferguson, pages 117-118, problems 1-3

8. Ferguson, pages 124-125, problems 1-7

9. Ferguson, page 131, problem 1

10. Ferguson, page 139, problems 1-4

11. Lehmann and Casella, pages 501-514, problems 3.1-7.34


