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Abstract
Multivariate meta-analysis is increasingly utilised in biomedical research to combine data of multiple
comparative clinical studies for evaluating drug efficacy and safety profile. When the probability of the
event of interest is rare, or when the individual study sample sizes are small, a substantial proportion of
studies may not have any event of interest. Conventional meta-analysis methods either exclude such
studies or include them through ad hoc continuality correction by adding an arbitrary positive value to
each cell of the corresponding 2! 2 tables, which may result in less accurate conclusions. Furthermore,
different continuity corrections may result in inconsistent conclusions. In this article, we discuss a
bivariate Beta-binomial model derived from Sarmanov family of bivariate distributions and a bivariate
generalised linear mixed effects model for binary clustered data to make valid inferences. These
bivariate random effects models use all available data without ad hoc continuity corrections, and
accounts for the potential correlation between treatment (or exposure) and control groups within
studies naturally. We then utilise the bivariate random effects models to reanalyse two recent meta-
analysis data sets.
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1 Introduction

The growth of evidence-based medicine has led to an increase in attention to meta-analysis.1 Meta-
analysis, also known as systematic overview, is a statistical process commonly used in biomedical
research of combining the information from several independent studies concerned with the same
clinical question including the treatment or exposure effect, with the aim of being able to resolve
contradictory issues that cannot be concluded from a single study alone.

In meta-analysis of a set of N clinical trials with a binary outcome comparing an experimental
treatment with a placebo, data can be represented as a series of 2! 2 tables. The standard fixed and
random meta-analysis methods for providing an overall estimate of the treatment effect across all
studies rely on some assumptions.2 Specifically, the fixed effect model assumes homogeneous
treatment effects across all studies. Let !i be the value of a chosen measure (e.g. risk difference,
RD or log relative risk) of treatment effect in the ith study (i¼ 1, 2, . . ., N), the homogeneity requires
!i ¼ ! (i¼ 1, 2, . . ., N). Let !̂i be an estimate of !i, and wi denote the weight, which is often taken to be
the reciprocal of the estimated variance "̂i of !̂i (i.e. ŵi ¼ 1 "̂i= ),3 then the overall treatment effect
based on the fixed effect model is estimated as a weighted average of the individual study estimated
treatment effects, that is, !̂w ¼

P
i ŵi!̂i

!P
i ŵi. Under the combined null hypothesis H0:

!i ¼ 0(i¼ 1, 2, . . ., N), the test-statistic U ¼ ð
P

i ŵi!̂iÞ2
!P

i ŵi follows a #2 distribution with
1 degree of freedom. A formal test of homogeneity can be performed using the Cochran’s
Q-statistic, defined by Q ¼

P
i ŵið!̂i % !̂wÞ2, which has approximately a #2

N%1 distribution under
the null hypothesis H0: !i ¼ ! (i¼ 1, 2, . . ., N).

Through a random-effects model, DerSimonian and Laird4 provided a way of incorporating
heterogeneity into the overall estimate by including a between-study variance component $2

b .
It basically assumes that !̂i & Nð!i, v̂iÞ and !i & Nð!, $2

bÞ.
2 The overall treatment effect is once

again obtained as a weighted average with the weight being estimated as ŵ'
i ¼ 1

!
ðv̂i þ $̂2

bÞ,
i.e. !̂'w ¼

P
i ŵ

'
i !̂i

!P
i ŵ

'
i . Under the combined null hypothesis H0: !i ¼ 0(i¼ 1, 2, . . ., N), the test-

statistic U' ¼ ð
P

i ŵ
'
i !̂iÞ

2!P
i ŵ

'
i follows a #2 distribution with 1 degree of freedom. The method

of moment’s estimate of $2
b is given by: $̂2

b ¼ maxf½
P

i ŵi % ð
P

i ŵ
2
i Þ
!P

i ŵi*%1½Q% ðN% 1Þ*, 0g.4
A concern on these conventional two-step meta-analysis methods is that, they require estimating

study-specific treatment effect !̂i (commonly expressed by log relative risk, log odds ratio; OR or
RD) and its variance "̂i based on the normal approximation. When the probability of the event of
interest is rare or if the individual study sample sizes are small, this normality assumption might not
hold. Furthermore, a substantial proportion of studies may not have any event of interest.
To circumvent the issues of zero cells, the conventional meta-analysis methods either exclude
such studies5 or add an arbitrary positive value to each cell of the corresponding 2! 2 tables in
the analysis, which may lead to less accurate conclusions. For example, different continuity
corrections may result in different conclusions.6 An interesting yet challenging methodology
question is how to use all available data without assigning an arbitrary number to the empty cells
in meta-analysis.7–10 Furthermore, it has been noted that these weighting-according-to-the-variance
methods may introduce biases in meta-analyses of binary outcomes because this weighting scheme
favours studies with certain frequencies of outcome events.11 The relative weights for the individual
studies in a meta-analysis may change considerably among different choices of effect measurements,
which may lead to contradictory conclusions. This is particularly true for the sparse data scenario.
Specifically, a study with zero event in both treatment and placebo groups, which would be excluded
on a relative scale, would be included and even be given a large weight on a RD scale.6

Recently, multivariate random effects models for meta-analyses have become increasingly
popular in biomedical research. For example, multivariate random effects models have been
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proposed for meta-analyses of diagnostic test studies12–18 and correlated multiple outcomes.19,20

Given the potential issues of applying conventional meta-analysis methods based on a univariate
outcome, we discuss bivariate random effects models to deal with those challenges for meta-analyses
of comparative clinical trials with binary outcomes in this article. Although, the proposed methods
were primarily presented for bivariate meta-analyses, they can be easily generalised to multivariate
meta-analyses. Specifically, Section 2 shows the estimation of marginal treatment effects using the
maximum likelihood methods under two models, i.e. a generalised linear mixed effects model and a
bivariate Beta-binomial model. In Section 3, we reanalyse the data from two case studies: the study
of type 2 diabetes mellitus after gestational diabetes21 and the study of myocardial infarction (MI)
with rosiglitazone.5 Section 4 concludes this article with a brief discussion.

2 Bivariate random effects models for meta-analysis of
comparative studies

Let nki be the number of subjects, and pki the probability of ‘success’ for the ith study (i¼ 1, 2, . . ., N)
in the kth treatment (or exposure) group with k¼ 1 denoting the placebo (or unexposed) group and
k¼ 2 denoting the treated (or exposed) group. Let Ykij denote a Bernoulli random variable with
value 1 denoting a ‘success’ and value 0 denoting a ‘failure’ for the jth subject (j¼ 1, 2, . . ., nki) of the
ith study in the kth treatment group. Let Xki ¼

Pnki
j¼1 Ykij be the total number of ‘success’ in the kth

treatment group in the ith study. In the first stage, conditional on the probability of events (i.e. pki)
and the number of subjects (i.e. nki) of the kth treatment group in the ith study, the bivariate random
effects model assumes that Xki is independently binomially distributed as Binðnki, pkiÞ for k¼ 1, 2 and
i¼ 1, 2, . . ., N, that is,

P X1i ¼ x1i, X2i ¼ x2ijn1i, n2i, p1i, p2ið Þ ¼
Y2

k¼1

nki
xki

" #
pkið Þxki 1% pkið Þnki%xki ð1Þ

In the second stage, the joint distribution f ð p1i, p2iÞ, which is also denoted as f ð p1, p2Þ for ease
of notation, is specified. Specifically, we first review the bivariate generalised linear mixed effects
models (BGLMMs) and then propose the bivariate Beta-binomial models as an alternative, for the
evaluation of marginal treatment or exposure effect. Note that bivariate models are commonly used
when there are two outcomes (e.g. the response to a treatment and the appearance of a side effect), in
this article, we use bivariate models to jointly model the study-specific response rates in the placebo
group and the treatment group in a meta-analysis with multiple studies.

2.1 Bivariate generalised linear mixed effects models

In the second stage, the BGLMM assumes a bivariate normal distribution of ð p1i, p2iÞ in a
transformed scale, which implies a linear relationship between p1i and p2i on a transformed scale.
It is generally specified as follows,

g p1ið Þ ¼ "1 þ "1i, g p2ið Þ ¼ "2 þ "2i and "1i, "2ið ÞT & N 0,D"ð Þ, ð2Þ

where g() is the link function such as the commonly used logit, probit and complementary log–log

transformation functions, ð"1, "2Þ are the fixed effects and D" ¼
$2
1 %$1$2

%$1$2 $2
2

" #
is the variance-

covariance matrix. To implement the natural constraint of %1 + % + 1, one can use the Fisher’s z
transformation as % ¼ ½expð2zÞ % 1*

!
½expð2zÞ þ 1*.
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Based on the model in Equation (2), the median success probability in the kth treatment group for
the population can be estimated as Mð pkÞ ¼ g%1ð"kÞ, k¼ 1, 2. And, its mean can be estimated as:

E pkð Þ ¼
Z þ1

%1
g%1 "k þ zð Þ$%1

k & z=$kð Þdz, k ¼ 1, 2, ð3Þ

where &ðÞ is the standard Gaussian density function. Based on the bivariate normality assumption of
ð"1i, "2iÞT, the expected success probability in group k (k¼ 1, 2) at a given success probability in
group l (l¼ 1, 2) in the transformed scale is given by:

E g pkð Þjg plð Þ½ * ¼ "k þ %$k=$l g plð Þ % "l½ * ¼ "k % %"l$k=$lð Þ þ %$k=$lg plð Þ, k 6¼ l; k, l ¼ 1, 2: ð4Þ

Thus, the BGLMM implies a linear relationship between p1 and p2 on a transformed scale.

2.2 Bivariate Beta-binomial models

As an alternative, Beta-binomial distributions can be used to model the success probabilities of the
treatment and control groups to account for the within-study correlation. To allow for the possible
correlation between the success probabilities in the treatment and control groups, Lee22 introduced a
class of bivariate Beta-binomial distributions using the framework introduced by Sarmanov.23 Such
bivariate Beta-binomial distributions can be used to model the success probabilities of ð p1i, p2iÞ
jointly as follows,

f p1i, p2ið Þ ¼ f p1, p2ð Þ ¼ 1þ !
Y2

k¼1

pk % 'kð Þ
" #

Y2

k¼1

pkð Þ(k%1 1% pkð Þ)k%1

B (k,)kð Þ

$ %
, ð5Þ

where (k, )k 4 0, Eð pkÞ ¼ 'k ¼
(k

(k þ )k
and Bð(k,)kÞ ¼

R 1
0 x(k%1ð1% xÞ)k%1dx. The bivariate Beta-

binomial distribution specified by Equation (5) has several attractive features. First, the marginal
distribution of pk follows a Beta distribution f ð pkÞ ¼ Betað(k, )kÞ. Second, a correlation between the
success probabilities in the treatment and control groups is allowed and modelled by % ¼ !*1*2,

where *2k ¼
(k)k

ð(k þ )kÞ2ð(k þ )k þ 1Þ
is the variance of pk. When !¼ 0, Equation (5) collapses to the

product of two univariate Beta densities, corresponding to independent Beta distributions for p1 and
p2. To ensure a valid joint probability density function, ! must satisfy the condition

% max (1(2,)1)2ð Þ½ *%1
Y2

k¼1

(k þ )kð Þ + ! + max (1)2,)1(2ð Þ½ *%1
Y2

k¼1

(k þ )kð Þ: ð6Þ

To ensure a valid joint probability density function for ð p1, p2Þ and avoid computational
difficulties, we re-parameterise ! by the unconstrained parameter + as follows,

! ¼
Y2

k¼1

(k þ )kð Þ expð+Þ
1þ expð+Þ

max (1)2,)1(2ð Þ½ *%1% 1

1þ expð+Þ
max (1(2,)1)2ð Þ½ *%1

& '
: ð7Þ
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The conditional distribution of pk for a chosen pl is f ð pkj pl Þ¼
f ð p1, p2Þ
f ð pl Þ

¼ f ð pkÞ½1þ !
Q2

k¼1
ð pk % 'kÞ*(k 6¼ l; k¼ 1, 2; l¼ 1, 2). The conditional mean of pk for a chosen pl is

given by Eð pkj pl Þ ¼ 'k þ %*k=*lð pl % 'l Þ, and the conditional variance of pk for a chosen pl is given
by:

Var pkj plð Þ ¼ *2k 1% %2
pl % 'lð Þ2

*2l

& '
þ %

pl % 'l

*k*l

2)k(k )k % (kð Þ
(k þ )k þ 2ð Þ (k þ )k þ 1ð Þ (k þ )kð Þ3

& '
: ð8Þ

The bivariate Beta-binomial model implies a linear relationship between p1 and p2 on the original
scale. The unconditional joint probability density function for ðX1 ¼ x1i, X2 ¼ x2iÞ is,

P X1 ¼ x1i, X2 ¼ x2ijn1i, n2i, (1, (2, )1, )2, !ð Þ ð9Þ

¼
Z 1

0

Z 1

0

Y2

k¼1

nki

xki

" #
pkið Þxki 1% pkið Þnki%xki 1þ !

Y2

k¼1

pki % 'kið Þ
" #

Y2

k¼1

pkið Þ(k%1 1% pkið Þ)k%1

B (k,)kð Þ

$ %
dp1idp2i

¼
Y2

k¼1

nki

xki

" #
B (k þ xki,)k þ nki % xkið Þ

B (k,)kð Þ
! 1þ !

Y2

k¼1

xki % nki'k

(k þ )k þ nki

" #

,

which leads to the following log-likelihood function for the observed 2! 2 tables after ignoring some
constant,

logL !,(k,)kð Þ ¼
XN

i¼1

X2

k¼1

(

logB (k þ xki,)k þ nki % xkið Þ % logB (k,)kð Þ

þ log 1þ !
Y2

k¼1

xki % nki'k

(k þ )k þ nki

" #)

,

ð10Þ

where ! must satisfy the condition in Equation (6) to ensure nonnegative probability.

2.3 Marginal treatment effects: risk difference and risk ratio

Although, the issue of deciding which effect measure to use in a particular application is non-trivial,1

we focus on the estimation of risk ratio (RR) and RD here for two reasons: (1) the interpretation
of OR as an estimate of RR often leads to exaggerated associations when the binary outcome
of interest is common;24–26 and (2) the well-known non-collapsibility issue related to OR makes it
undesirable in interpretation and estimation.27,28 For example, in the presence of effect modification,
when an exposure increases risk but all risks are less than 0.5, it is possible for the relative risk and
the RD to change in the same direction, but the OR to change in the opposite direction.29 In this
article, we focus on the overall marginal (or population averaged) treatment (or exposure) effect,
as suggested by McCullagh,30,31 which is defined as the RD (RD)¼Eð p1Þ % Eð p2Þ and the
RR¼Eð p1Þ=Eð p2Þ, where E pkð Þ ¼

Rþ1
%1 g%1 "k þ zð Þ$%1

k & z=$kð Þdz for the BGLMM and
E pkð Þ ¼ (k= (k þ )kð Þ for the bivariate Beta-binomial model, k¼ 1,2. Furthermore, although the
computation of Eð pkÞ k ¼ 1, 2ð Þ from BGLMM involves integration, there is a closed-form

formula of E pkð Þ¼! "k=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ $2

k

q) *
k ¼ 1, 2ð Þ for the bivariate probit random effects model, and
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a well-established approximation formula of E pkð Þ, expitð"i=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2$2

k

q
Þ k ¼ 1, 2ð Þ for the bivariate

logit random effects models,32 where C ¼ 16
ffiffiffi
3

p
= 15,ð Þ. For the complementary log–log random

effects models, Eð pkÞ can be easily computed by numerical integration, for example, by the
trapezoidal rule with 1000 equal space subintervals as implemented in this article.

2.4 Model implementation

The bivariate Beta-binomial model and the bivariate generalised linear mixed model can be fitted
using commonly used statistical software. We implement it through the SAS NLMIXED procedure
(SAS Institute Inc., Cary, NC), which maximises the likelihood function by dual quasi-Newton
optimisation techniques for the bivariate Beta-binomial model, and uses an adaptive Gaussian
quadrature to approximate the likelihood integrated over the random effects for BGLMM.33

Furthermore, the delta method built in SAS NLMIXED is used to compute the population
averaged overall treatment effect estimates and their SEs based on the normal approximation. To
select a model that can give a better goodness-of-fit, either the finite sample corrected Akaike’s
information criterion (AICC) or the Bayesian information criterion (BIC) can be used as the
guideline.34

3 Two case studies

To illustrate and compare the performance of the bivariate Beta-binomial model and the BGLMMs
discussed in this article, we apply them to two recently published meta-analyses.

3.1 Example 1: Meta-analysis of type 2 diabetes mellitus after
gestational diabetes

Recently, Bellamy et al.21 presented an interesting comprehensive systematic review and meta-
analysis to assess the strength of association between gestational diabetes and type 2 diabetes
mellitus. In summary, 20 cohort studies were included in the meta-analysis with 675 455 women
and 10 859 type 2 diabetic events. Table 1 shows the frequencies of the diabetic events for these 20
studies.

We fitted the bivariate Beta-binomial and the BGLMMs as described in Section 2 to study the
association between gestational diabetes and type 2 diabetes mellitus. Table 2 presents the parameter
estimates and their SEs, including the population averaged risk of type 2 diabetes mellitus for those
with and without gestational diabetes, population averaged RD and RR, and the goodness-of-fit
measures including the finite sample corrected AICC and the BIC. As shown in Table 2, there is not
enough evidence to support that the risks of type 2 diabetes mellitus for those with and without
gestational diabetes are correlated within studies from both the bivariate Beta-binomial model and
the bivariate generalised linear mixed models with three link functions, i.e. the models with %¼ 0
provide better goodness-of-fit for all four models considered. Note that the results from different
models are very similar here. Based on AICC and BIC, the best fitted model is a bivariate logit
generalised linear mixed effects model with % ¼ 0 and $2

1 ¼ $2
2 . Based on this model, the population

averaged risk of type 2 diabetes mellitus for those with and without gestational diabetes are
estimated to be 0.200 (SE¼ 0.031) and 0.025 (SE¼ 0.006), respectively. The population averaged
RD is estimated to be 0.175 (SE¼ 0.031), where the population averaged RR is estimated to be
7.948 (SE¼ 2.167). It is interesting to note that the population averaged RR estimates from all
models are slightly higher than what Bellamy et al.21 reported (i.e. 7.43 with 95% confidence interval
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of 4.79 to 11.51) based on the random effects model by DerSimonian and Laird.4 The reason might
be the fact that an ad hoc continuity correction was implemented for the studies with zero diabetic
events in the group without gestational diabetes in Bellamy et al.,21 where our models do not.

Because one of the studies has almost all the cases (9502 out of 10859 cases), we did a sensitivity
meta-analysis by excluding that study. The results are presented in Table A1. In summary, it
suggests similar conclusions. Specifically, the best fitted model is a bivariate probit generalised
linear mixed effects model with % ¼ 0 and $2

1 ¼ $2
2, and the population averaged risk of type

2 diabetes mellitus for those with and without gestational diabetes are estimated to be 0.205
(SE¼ 0.031) and 0.025 (SE¼ 0.007), respectively. The population averaged RD is estimated to be
0.181 (SE¼ 0.032), where the population RR is estimated to be 8.371 (SE¼ 2.756).

3.2 Example 2: Meta-analysis of the risk of MI with rosiglitazone

To investigate whether rosiglitazone, a drug for treating type 2 diabetes mellitus, significantly
increases the risk of MI or cardiovascular disease (CVD)-related death, Nissen and Wolski5

performed a meta-analysis of 48 clinical trials that satisfied the inclusion criteria for their
analysis. Among them, 10 studies have no MI events and 25 studies have no CVD-related deaths,
which were simply excluded by Nissen and Wolski from their analysis. This meta-analysis data set
has been reanalysed by Shuster et al.,35 Tian et al.8 and others,36–38 and updated by Dahabreh.39 For
the illustration purpose, we will only focus on the association between rosiglitazone usage and the

Table 1. Example 1: Data from a meta-analysis of studies on type 2 diabetes mellitus after gestational diabetes21.

Study

Type 2 diabetes mellitus
with gestational diabetes

Type 2 diabetes mellitus
without gestational diabetes

# events # observations # events # observations

1 2874 21823 6628 637341
2 71 620 22 868
3 21 68 0 39
4 43 166 150 2242
5 53 295 1 111
6 405 5470 16 783
7 6 70 7 108
8 13 35 8 489
9 7 23 0 11
10 23 435 0 435
11 44 696 0 70
12 21 229 1 61
13 10 28 0 52
14 15 45 1 39
15 105 801 7 431
16 10 15 0 35
17 33 241 0 57
18 14 47 3 47
19 224 615 18 328
20 5 145 0 41

H Chu et al. 7
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risk of MI. In summary, 86 out of 16 856 in the rosiglitazone group and 72 out of 12 962 in the
control group had MI event in the 48 clinical trials.

Similar to Section 3.1, we fitted the bivariate Beta-binomial and the BGLMMs as described in
Section 2 on those 48 clinical trials to study the association between rosiglitazone usage and the risk
of MI in type 2 diabetes mellitus patients. Table 3 presents the parameter estimates and their SEs,
including the population averaged risk of MI event for those with and without rosiglitazone usage,
the population averaged RD and RR, and the goodness-of-fit measurements including the finite
sample corrected AICC and the BIC. The BGLMM models assuming random effects v1i ¼ v2i with
any of the three link functions provide better model fit than the bivariate Beta-binomial model with
either % 6¼ 0 or %¼ 0. Based on AICC and BIC, the bivariate logit and complementary log–log
generalised linear mixed effects models with random effects v1i ¼ v2i provide similar best fit.

It is worthy to mention that for the logit BGLMM model, it seems that the approximation of

Eð pkÞ, expitð"k=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2$2

k

q
Þ, where C ¼ 16

ffiffiffi
3

p
= 15,ð Þ, slightly overestimate the population

averaged probability of MI for each group. For example, for the logit BGLMM model assuming
random effects v1i ¼ v2i, the estimated population averaged probabilities of MI in the
rosiglitazone treatment and control groups are 0.00627 (SE¼ 0.00133) and 0.00480 (SE¼ 0.00109)

using the approximation of Eð pkÞ , expitð"k=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2$2

k

q
Þ. While, using the numerical integration

by: E pkð Þ ¼
Rþ1
%1 1= 1þ exp %"k % zð Þ½ *$%1

k & z=$kð Þdz, the corresponding estimates are 0.00493
(SE¼ 0.00140) and 0.00366 (SE¼ 0.00114), which are consistent with the estimates from other
models. However, we notice that the overestimation of the population averaged probability of
MI using the approximation formula of the logit BGLMM does not seem to have any noticeable
effects on the estimation of RD or RR.

4 Discussion

In this article, we discussed bivariate Beta-binomial models derived from Sarmanov family of
bivariate distributions and BGLMMs using a general link function for meta-analysis of 2! 2
tables in comparative clinical studies. Specifically, we have discussed logit, probit and
complementary log–log link functions as special cases. These bivariate random effects models
naturally account for the potential correlation between treatment (or exposure) and control
groups within studies. Moreover, they can be used to make valid inferences using all available
data without using ad hoc continuity corrections for the sparse data scenario. We illustrated the
utilisation of the bivariate random effects models in two recent meta-analysis data sets, which
emphasises the importance of model selection. In particular, based on AICC and BIC, in the
example one, the best fitted model is a bivariate logit generalised linear mixed effects model with
% ¼ 0 and $2

1 ¼ $2
2 , which suggests that the study-specific risks of type 2 diabetes mellitus (in logit

scale) for those with and without gestational diabetes are independent and have similar variations.
In the example two, both the bivariate logit and complementary log–log generalised linear mixed
effects models with random effects v1i ¼ v2i provide similar best fit, which suggests that one can
reasonably assume a fixed effect of rosiglitazone on the risk of MI (in logit or complementary
log–log scale). Furthermore, we provided methods to estimate the population averaged RD and
relative risk. It is worth to noting that the bivariate Beta-binomial model and the BGLMMs involves
two different distributional assumptions, one would imagine that their performance would heavily
depend on whether the distributional assumptions approximate the underline data generating
mechanism. In particular, the BGLMMs implies a linear relationship between p1 and p2 on a
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transformed scale, and after transforming back to the scale of probability, the relation between
p1 and p2 is no longer linear. The Beta-binomial model implies a linear relationship between p1 and
p2 on the original scale. So which model works better in a particular application depends on whether
the relation between p1 and p2 is linear on the original scale or on the transformed scale. We suggest
that fitting both models and comparing goodness-of-fit to select the best model to make inference in
practice.

Alternative approaches using Bayesian methods can be fitted by free downloadable software such
as WinBUGS, for example, by the Bayesian random effect models as in Warn, Thompson and
Spiegelhalter.40 However, Warn et al.40 focused on the conditional treatment effects. Here, we
focus on the overall marginal (or population averaged) treatment effects, as suggested by
McCullagh.30,31 Remark that our parameterisation of BGLMM is slightly different from the
random effects models by Smith et al.41 and Warn et al.40 Specifically, Smith et al.41 considered a
Bayesian logit random effects model assuming logit p1ið Þ ¼ 'i % *i=2, logit p2ið Þ ¼ 'i þ *i=2,
*i & N *, $2

+ ,
, and non-informative priors for the average event rates,'is, which are treated as the

nuisance parameters. It implicitly restricts Var logit p1ið Þ½ *¼ Var logit p2ið Þ½ *, i.e. restricting $2
1 ¼ $2

2 as
in the BGLMM model. Warn et al.40 assumes that g p1ið Þ ¼ 'i, g p2ið Þ ¼ 'i þ *i and *i & Nð*, $2Þ
where gðÞ is a link function, which implicitly restricts Var g p1ið Þ½ * +Var g p2ið Þ½ *, i.e. restricting $2

1 + $2
2

in our BGLMM parameterisation. It is worth pointing out that our purpose here is not to
demonstrate the advantage of our approach over a Bayesian approach, because both BGLMM
and bivariate Beta-binomial models can be fitted using a Bayesian approach. For the general
model that we considered in Equation (2), we do not make any restrictions on the variances of $2

1

and $2
2 . Furthermore, the bivariate Beta-binomial model and the bivariate generalised linear mixed

models we proposed in this article do not include any study-level or individual level covariates. It is
straightforward to include covariates when using the BGLMM through the SAS NLMIXED
procedure.
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