CHAPTER 2: BASIC MEASURE THEORY
Set Theory and Topology in Real Space
• Basic concepts in set theory

 – element, set, whole space \((\Omega)\)

 – power set: \(2^\Omega\); empty set: \(\emptyset\)

 – set relationship: \(A \subseteq B, \bigcap_\alpha A_\alpha, \bigcup_\alpha A_\alpha, A^c, A - B\)

\[A - B = A \cap B^c \]
• Set operations
 – properties: for any $B, \{A_\alpha\}$,
 \[
 B \cap \{\cup_\alpha A_\alpha\} = \cup_\alpha \{B \cap A_\alpha\}, \quad B \cup \{\cap_\alpha A_\alpha\} = \cap_\alpha \{B \cup A_\alpha\},
 \]
 \[
 \{\cup_\alpha A_\alpha\}^c = \cap_\alpha A_\alpha^c, \quad \{\cap_\alpha A_\alpha\}^c = \cup_\alpha A_\alpha^c. \quad \text{(de Morgan law)}
 \]
 – partition of a set
 \[
 A_1 \cup A_2 \cup A_3 \cup ... = A_1 \cup (A_2 - A_1) \cup (A_3 - A_1 \cup A_2) \cup ...
 \]
 – $\limsup_n A_n = \cap_{n=1}^\infty \{\cup_{m=n}^\infty A_m\}$
 – $\liminf_n A_n = \cup_{n=1}^\infty \{\cap_{m=n}^\infty A_m\}$.
• **Topology in the Euclidean space**

- *open set, closed set, compact set*

- properties: the union of any number of open sets is open; A is closed if and only if for any sequence $\{x_n\}$ in A such that $x_n \to x$, x must belong to A

- only \emptyset and the whole real line are both open set and closed

- any open-set covering of a compact set has finite number of open sets covering the compact set
Measure Space
Motivating example: counting measure

- $\Omega = \{x_1, x_2, \ldots\}$

- a set function $\mu^\#(A)$ is the number of points in A.

- (a) $\mu^\#(\emptyset) = 0$;

(b) if A_1, A_2, \ldots are disjoint sets of Ω, then

$$\mu^\#(\bigcup_n A_n) = \sum_n \mu^\#(A_n).$$
Motivating example: Lebesgue measure

- $\Omega = (-\infty, \infty)$

- how to measure the sizes of possibly any subsets in \mathbb{R}? a set function λ?

- (a) $\lambda(\emptyset) = 0$;
 (b) for any disjoint sets A_1, A_2, \ldots,

 $$\lambda(\bigcup_n A_n) = \sum_n \lambda(A_n)$$

- assign the length to each set of \mathcal{B}_0

 $$\bigcup_{i=1}^n (a_i, b_i] \cup (-\infty, b] \cup (a, \infty), \text{ disjoint intervals}$$

- What about non-intervals? how about in \mathbb{R}^k?
• Three components in defining a measure space
 – the whole space, Ω
 – a collection of subsets whose sizes are measurable, \mathcal{A},
 – a set function μ assigns non-negative values (sizes) to each set of \mathcal{A} and satisfies properties (a) and (b)
Field, σ-field
• Some intuition
 – \(\mathcal{A} \) contains the sets whose sizes are measurable
 – \(\mathcal{A} \) should be closed under complement or union
Definition 2.1 (fields, \(\sigma\)-fields) A non-void class \(\mathcal{A}\) of subsets of \(\Omega\) is called a:

(i) field or algebra if \(A, B \in \mathcal{A}\) implies that \(A \cup B \in \mathcal{A}\) and \(A^c \in \mathcal{A}\); equivalently, \(\mathcal{A}\) is closed under complements and finite unions.

(ii) \(\sigma\)-field or \(\sigma\)-algebra if \(\mathcal{A}\) is a field and \(A_1, A_2, \ldots \in \mathcal{A}\) implies \(\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}\); equivalently, \(\mathcal{A}\) is closed under complements and countable unions. \(\dagger\)
Properties of σ-field

Proposition 2.1. (i) For a field \mathcal{A}, $\emptyset, \Omega \in \mathcal{A}$ and if $A_1, ..., A_n \in \mathcal{A}$, then $\bigcap_{i=1}^{n} A_i \in \mathcal{A}$.

(ii) For a σ-field \mathcal{A}, if $A_1, A_2, ... \in \mathcal{A}$, then $\bigcap_{i=1}^{\infty} A_i \in \mathcal{A}$.
Proof

(i) For any $A \in \mathcal{A}$, $\Omega = A \cup A^c \in \mathcal{A} \Rightarrow \emptyset = \Omega^c \in \mathcal{A}$.

$A_1, \ldots, A_n \in \mathcal{A} \Rightarrow \cap_{i=1}^{n} A_i = (\cup_{i=1}^{n} A_i^c)^c \in \mathcal{A}$.

(ii) $(\cap_{i=1}^{\infty} A_i)^c = \cup_{i=1}^{\infty} A_i^c$.
• Examples of σ-field

- $\mathcal{A} = \{\emptyset, \Omega\}$ and $2^\Omega = \{A : A \subset \Omega\}$

- \mathcal{B}_0 is a field but not a σ-field

\[(a, b) = \bigcup_{n=1}^\infty (a, b - 1/n) \notin \mathcal{B}_0 \]

- $\mathcal{A} = \{A : A \text{ is in } R \text{ and } A^c \text{ is countable}\}$

\mathcal{A} is closed under countable union but not complement
• Measure defined on a σ-field

Definition 2.2 (measure, probability measure)

(i) A *measure* μ is a function from a σ-field \mathcal{A} to $[0, \infty)$ satisfying: $\mu(\emptyset) = 0$; $\mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n)$ for any countable (finite) disjoint sets $A_1, A_2, ... \in \mathcal{A}$. The latter is called the *countable additivity*.

(ii) Additionally, if $\mu(\Omega) = 1$, μ is a *probability measure* and we usually use P instead of μ to indicate a probability measure.
Properties of measure

Proposition 2.2

(i) If \(\{A_n\} \subset A \) and \(A_n \subset A_{n+1} \) for all \(n \), then
\[
\mu(\bigcup_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mu(A_n).
\]

(ii) If \(\{A_n\} \subset A, \, \mu(A_1) < \infty \) and \(A_n \supset A_{n+1} \) for all \(n \), then
\[
\mu(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mu(A_n).
\]

(iii) For any \(\{A_n\} \subset A, \, \mu(\bigcup_n A_n) \leq \sum_n \mu(A_n) \) (countable sub-additivity).

(iv) \(\mu(\lim \inf_n A_n) = \lim_n \mu(\bigcap_{k=n}^{\infty} A_n) \leq \lim \inf_n \mu(A_n) \)
Proof

(i) \(\mu(\bigcup_{n=1}^{\infty} A_n) = \mu(A_1 \cup (A_2 - A_1) \cup ...) = \mu(A_1) + \mu(A_2 - A_1) + ... = \lim_n \{\mu(A_1) + \mu(A_2 - A_1) + ... + \mu(A_n - A_{n-1})\} = \lim_n \mu(A_n). \)

(ii) \(\mu(\bigcap_{n=1}^{\infty} A_n) = \mu(A_1) - \mu(A_1 - \bigcap_{n=1}^{\infty} A_n) = \mu(A_1) - \mu(\bigcup_{n=1}^{\infty} (A_1 \cap A_n^c)). \)

\(A_1 \cap A_n^c \) is increasing

\(\Rightarrow \) the second term equals \(\lim_n \mu(A_1 \cap A_n^c) = \mu(A_1) - \lim_n \mu(A_n). \)

(iii) \(\mu(\bigcup_n A_n) = \lim_n \mu(A_1 \cup ... \cup A_n) = \lim_n \{\sum_{i=1}^{n} \mu(A_i - \bigcup_{j<i} A_j)\} \\
\leq \lim_n \sum_{i=1}^{n} \mu(A_i) = \sum_n \mu(A_n). \)

(iv) \(\mu(\liminf_n A_n) = \lim_n \mu(\bigcap_{k=n}^{\infty} A_n) \leq \lim inf_n \mu(A_n). \)
• Measures space

a triplet \((\Omega, \mathcal{A}, \mu)\)

− set in \(\mathcal{A}\) is called a measurable set

− If \(\mu = P\) is a probability measure, \((\Omega, \mathcal{A}, P)\) is a probability measure space: probability sample and probability event

− a measure \(\mu\) is called \(\sigma\)-finite if there exists a countable sets \(\{F_n\} \subset \mathcal{A}\) such that \(\Omega = \bigcup_n F_n\) and for each \(F_n, \mu(F_n) < \infty\).
Examples of measure space

- discrete measure:

\[\mu(A) = \sum_{\omega_i \in A} m_i, \quad A \in \mathcal{A}. \]

- counting measure \(\mu^\# \) in any space, say \(\mathbb{R} \): it is not \(\sigma \)-finite.
Measure Space Construction
Two basic questions

- Can we find a \(\sigma \)-field containing all the sets of \(\mathcal{C} \)?
- Can we obtain a set function defined for any set of this \(\sigma \)-field such that the set function agrees with \(\mu \) in \(\mathcal{C} \)?
• **Answer to the first question**

Proposition 2.3 (i) Arbitrary intersections of fields (σ-fields) are fields (σ-fields).

(ii) For any class \(\mathcal{C} \) of subsets of \(\Omega \), there exists a minimal σ-field containing \(\mathcal{C} \) and we denote it as \(\sigma(\mathcal{C}) \).
Proof

(i) is obvious.

For (ii),

$$\sigma(C) = \bigcap_{C \subset A, A \text{ is } \sigma\text{-field}} A,$$

i.e., the intersection of all the σ-fields containing C.
• Answer to the second question

Theorem 2.1 (Caratheodory Extension Theorem)
A measure μ on a field \mathcal{C} can be extended to a measure on the minimal σ-field $\sigma(\mathcal{C})$. If μ is σ-finite on \mathcal{C}, then the extension is unique and also σ-finite.

Construction

$$\mu^*(A) = \inf \left\{ \sum_{i=1}^{\infty} \mu(A_i) : A_i \in \mathcal{C}, A \subset \bigcup_{i=1}^{\infty} A_i \right\}.$$
• Application to measure construction
 – generate a \(\sigma \)-field containing \(\mathcal{B}_0 \): Borel \(\sigma \)-field \(\mathcal{B} \)
 – extend \(\lambda \) to \(\mathcal{B} \): the Lebesgue measure
 – \((\mathbb{R}, \mathcal{B}, \lambda) \) is named the Borel measure space
 – in \(\mathbb{R}^k \), we obtain \((\mathbb{R}^k, \mathcal{B}^k, \lambda^k) \)
• Other measure construction on \mathcal{B}

 – F is non-decreasing and right-continuous

 – a set function in \mathcal{B}_0: $\lambda_F((a, b]) = F(b) - F(a)$

 – measure extension λ_F in \mathcal{B}: Lebesgue-Stieltjes measure generated by F

 – the Lebesgue measure is a special case with $F(x) = x$

 – if F is a distribution function, this measure is a probability measure in \mathbb{R}
• Completion after measure construction
 – motivation: any subsets of a zero-measure set should be given measure zero but may not be in \mathcal{A}
 – Completion: add these nuisance sets to \mathcal{A}
• Details of completion

 - obtain another measure space \((\Omega, \mathcal{A}, \bar{\mu})\)

 \[
 \mathcal{A} = \{ A \cup N : A \in \mathcal{A}, \quad N \subset B \text{ for some } B \in \mathcal{A} \text{ such that } \mu(B) = 0 \} \]

 and \(\bar{\mu}(A \cup N) = \mu(A)\).

 - the completion of the Borel measure space is the \textit{Lebesgue measure space} and the completed Borel \(\sigma\)-field is the \(\sigma\)-field of \textit{Lebesgue sets}

 - we always assume that a measure space is completed
Measurable Function
Definition 2.3 (measurable function) Let $X : \Omega \rightarrow \mathbb{R}$ be a function defined on Ω. X is measurable if for $x \in \mathbb{R}$, the set $\{ \omega \in \Omega : X(\omega) \leq x \}$ is measurable, equivalently, belongs to \mathcal{A}. Especially, if the measure space is a probability measure space, X is called a random variable.
• Property of measurable function

Proposition 2.4 If X is measurable, then for any $B \in \mathcal{B}$, $X^{-1}(B) = \{\omega : X(\omega) \in B\}$ is measurable.
Proof

\[\mathcal{B}^* = \{ B : B \subset \mathbb{R}, X^{-1}(B) \text{ is measurable in } \mathcal{A} \} \]

\((-\infty, x] \in \mathcal{B}^* . \]

\[B \in \mathcal{B}^* \Rightarrow X^{-1}(B) \in \mathcal{A} \Rightarrow X^{-1}(B^c) = \Omega - X^{-1}(B) \in \mathcal{A} \]
then \(B^c \in \mathcal{B}^* . \]

\[B_1, B_2, ..., \in \mathcal{B}^* \Rightarrow X^{-1}(B_1), X^{-1}(B_2), ..., \in \mathcal{A} \Rightarrow \]
\[X^{-1}(B_1 \cup B_2 \cup ...) = X^{-1}(B_1) \cup X^{-1}(B_2) \cup ... \in \mathcal{A} . \]
\[\Rightarrow B_1 \cup B_2 \cup ... \in \mathcal{B}^* . \]

\[\Rightarrow \mathcal{B}^* \text{ is a } \sigma\text{-field containing all intervals of the type } (-\infty, x] \Rightarrow \]
\[\mathcal{B} \subset \mathcal{B}^* . \]
For any Borel set \(B, X^{-1}(B) \) is measurable in \(\mathcal{A} . \)
• Construction of measurable function

 - *simple function*: \(\sum_{i=1}^{n} x_i I_{A_i}(\omega) \), \(A_i \in \mathcal{A} \)

 - the finite summation and the maximum of simple functions are still simple functions

 - any elementary functions of measurable functions are measurable
Proposition 2.5 Suppose that \(\{X_n\} \) are measurable. Then so are \(X_1 + X_2, X_1X_2, X_1^2 \) and \(\sup_n X_n, \inf_n X_n, \limsup_n X_n \) and \(\liminf_n X_n \).
Proof

\[\{X_1 + X_2 \leq x\} = \Omega - \{X_1 + X_2 > x\} = \]
\[\Omega - \bigcup_{r \in Q} \{X_1 > r\} \cap \{X_2 > x - r\} , Q=\{ \text{all rational numbers} \}. \]

\[\{X_1^2 \leq x\} = \{X_1 \leq \sqrt{x}\} - \{X_1 < -\sqrt{x}\}. \]

\[X_1X_2 = \{(X_1 + X_2)^2 - X_1^2 - X_2^2\} / 2 \]

\[\{\sup_n X_n \leq x\} = \bigcap_n \{X_n \leq x\}. \]
\[\{\inf_n X_n \leq x\} = \{\sup_n (-X_n) \geq -x\}. \]

\[\{\limsup_n X_n \leq x\} = \bigcap_{r \in Q, r>0} \bigcup_{n=1}^{\infty} \bigcap_{k \geq n} \{X_k < x + r\}. \]
\[\liminf_n X_n = -\limsup_n (-X_n). \]
• Approximating measurable function with simple functions

Proposition 2.6 For any measurable function $X \geq 0$, there exists an increasing sequence of simple functions $\{X_n\}$ such that $X_n(\omega)$ increases to $X(\omega)$ as n goes to infinity.
Proof

\[X_n(\omega) = \sum_{k=0}^{n2^n-1} \frac{k}{2^n} I\{\frac{k}{2^n} \leq X(\omega) < \frac{k + 1}{2^n}\} + nI\{X(\omega) \geq n\} \]

⇒ \(X_n \) is increasing over \(n \).

⇒ if \(X(\omega) < n \), then \(|X_n(\omega) - X(\omega)| < \frac{1}{2^n} \).

⇒ \(X_n(\omega) \) converges to \(X(\omega) \).

If \(X \) is bounded, \(\sup_\omega |X_n(\omega) - X(\omega)| < \frac{1}{2^n} \)
Integration
Definition 2.4 (i) For any simple function $X(\omega) = \sum_{i=1}^{n} x_i I_{A_i}(\omega)$, we define $\sum_{i=1}^{n} x_i \mu(A_i)$ as the integral of X with respect to measure μ, denoted as $\int X \, d\mu$.

(ii) For any $X \geq 0$, we define $\int X \, d\mu$ as

$$\int X \, d\mu = \sup_{Y\text{ is simple function, } 0 \leq Y \leq X} \int Y \, d\mu.$$
(iii) For general X, let $X^+ = \max(X, 0)$ and
$X^- = \max(-X, 0)$. Then $X = X^+ - X^-$. If one of
$\int X^+ d\mu, \int X^- d\mu$ is finite, we define
$$\int X d\mu = \int X^+ d\mu - \int X^- d\mu.$$
• Some notes

 – X is integrable if $\int |X| \, d\mu = \int X^+ \, d\mu + \int X^- \, d\mu$ is finite

 – the definition (ii) is consistent with (i) when X itself is a simple function

 – for a probability measure space and X is a random variable, $\int X \, d\mu \equiv E[X]$
Fundamental properties of integration

Proposition 2.7 (i) For two measurable functions $X_1 \geq 0$ and $X_2 \geq 0$, if $X_1 \leq X_2$, then $\int X_1 d\mu \leq \int X_2 d\mu$.

(ii) For $X \geq 0$ and any sequence of simple functions Y_n increasing to X, $\int Y_n d\mu \to \int X d\mu$.
Proof

(i) For any simple function \(0 \leq Y \leq X_1, Y \leq X_2\).
\[\Rightarrow \int Y \, d\mu \leq \int X_2 \, d\mu. \]
Take the supreme over all the simple functions less than \(X_1\)
\[\Rightarrow \int X_1 \, d\mu \leq \int X_2 \, d\mu. \]

(ii) From (i), \(\int Y_n \, d\mu\) is increasing and bounded by \(\int X \, d\mu\).

It suffices to show that for any simple function \(Z = \sum_{i=1}^{m} x_i I_{A_i}(\omega)\),
where \(\{A_i, 1 \leq i \leq m\}\) are disjoint measurable sets and \(x_i > 0\),
such that \(0 \leq Z \leq X\),
\[\lim_{n} \int Y_n \, d\mu \geq \sum_{i=1}^{m} x_i \mu(A_i). \]
We consider two cases.

Case 1. \(\int Zd\mu = \sum_{i=1}^{m} x_i \mu(A_i) \) is finite thus both \(x_i \) and \(\mu(A_i) \) are finite.

Fix an \(\epsilon > 0 \), let \(A_{in} = A_i \cap \{ \omega : Y_n(\omega) > x_i - \epsilon \} \). \(\Rightarrow \) \(A_{in} \) increases to \(A_i \) \(\Rightarrow \) \(\mu(A_{in}) \) increases to \(\mu(A_i) \).

When \(n \) is large,

\[
\int Y_n d\mu \geq \sum_{i=1}^{m} (x_i - \epsilon) \mu(A_i).
\]

\(\Rightarrow \) \(\lim_n \int Y_n d\mu \geq \int Zd\mu - \epsilon \sum_{i=1}^{m} \mu(A_i) \).

\(\Rightarrow \) \(\lim_n \int Y_n d\mu \geq \int Zd\mu \) by letting \(\epsilon \) approach 0.
Case 2 suppose $\int Zd\mu = \infty$ then there exists some i from
\{1, ..., m\}, say 1, so that $\mu(A_1) = \infty$ or $x_1 = \infty$.

Choose any $0 < x < x_1$ and $0 < y < \mu(A_1)$.

$A_{1n} = A_1 \cap \{\omega : Y_n(\omega) > x\}$ increases to A_1. n large enough,
$\mu(A_{1n}) > y$

$\Rightarrow \lim_n \int Y_n d\mu \geq xy.$

\Rightarrow Letting $x \to x_1$ and $y \to \mu(A_1)$, conclude $\lim_n \int Y_n d\mu = \infty$.

$\Rightarrow \lim_n \int Y_n d\mu \geq \int Z d\mu.$
• Elementary properties

Proposition 2.8 Suppose $\int Xd\mu$, $\int Yd\mu$ and $\int Xd\mu + \int Yd\mu$ exist. Then
(i) $\int (X + Y)d\mu = \int Xd\mu + \int Yd\mu, \quad \int cXd\mu = c \int Xd\mu$;
(ii) $X \geq 0$ implies $\int Xd\mu \geq 0$; $X \geq Y$ implies $\int Xd\mu \geq \int Yd\mu$; and $X = Y$ a.e. implies that $\int Xd\mu = \int Yd\mu$;
(iii) $|X| \leq Y$ with Y integrable implies that X is integrable; X and Y are integrable implies that $X + Y$ is integrable.
• Calculation of integration by definition

\[
\int X \, d\mu = \lim_{n} \left\{ \sum_{k=1}^{n2^n-1} \frac{k}{2^n} \mu(\frac{k}{2^n} \leq X < \frac{k+1}{2^n}) + n \mu(X \geq n) \right\}.
\]
• Integration w.r.t counting measure or Lebesgue measure

- $\int gd\mu^# = \sum_i g(x_i)$.

- continuous function $g(x)$, $\int gd\lambda$ is equal to the usual Riemann integral $\int g(x)dx$

- $(\Omega, \mathcal{B}, \lambda_F)$, where F is differentiable except discontinuous points $\{x_1, x_2, \ldots\}$,

$$\int gd\lambda_F = \sum_i g(x_i) \{F(x_i) - F(x_i-)\} + \int g(x)f(x)dx,$$

where $f(x)$ is the derivative of $F(x)$.
Convergence Theorems
• Monotone convergence theorem (MCT)

Theorem 2.2 If $X_n \geq 0$ and X_n increases to X, then
\[
\int X_n \, d\mu \to \int X \, d\mu.
\]
Proof

Choose nonnegative simple function X_{km} increasing to X_k as $m \to \infty$. Define $Y_n = \max_{k \leq n} X_{kn}$.

$\Rightarrow \{Y_n\}$ is an increasing series of simple functions

$$X_{kn} \leq Y_n \leq X_n,$$

so

$$\int X_{kn} d\mu \leq \int Y_n d\mu \leq \int X_n d\mu.$$

$\Rightarrow n \to \infty \ X_k \leq \lim_n Y_n \leq X$ and

$$\int X_k d\mu \leq \int \lim_n Y_n d\mu = \lim_n \int Y_n d\mu \leq \lim_n \int X_n d\mu.$$

$\Rightarrow k \to \infty, \ X \leq \lim_n Y_n \leq X$ and

$$\lim_k \int X_k d\mu \leq \int \lim_n Y_n d\mu \leq \lim_n \int X_n d\mu.$$

The result holds.
• Counter example

\[X_n(x) = -I(x > n)/n \] in the Lebesgue measure space.

\(X_n \) increases to zero but \(\int X_n d\lambda = -\infty \)
• Fatou’s Lemma

Theorem 2.3 If $X_n \geq 0$ then

$$\int \liminf_n X_n d\mu \leq \liminf_n \int X_n d\mu.$$
Proof

\[\liminf_{n} X_n = \sup_{n=1}^{\infty} \inf_{m \geq n} X_m. \]

\[\Rightarrow \{ \inf_{m \geq n} X_m \} \text{ increases to } \lim \inf_{n} X_n. \]

By the MCT,

\[\int \liminf_{n} X_n d\mu = \lim_{n} \int \inf_{m \geq n} X_m d\mu \leq \int X_n d\mu. \]
• Two definitions in convergence

Definition 2.4 A sequence \(X_n \) converges almost everywhere (a.e.) to \(X \), denoted \(X_n \to_{a.e.} X \), if \(X_n(\omega) \to X(\omega) \) for all \(\omega \in \Omega - N \) where \(\mu(N) = 0 \). If \(\mu \) is a probability, we write a.e. as a.s. (almost surely). A sequence \(X_n \) converges in measure to a measurable function \(X \), denoted \(X_n \to_{\mu} X \), if
\[
\mu(|X_n - X| \geq \epsilon) \to 0
\]
for all \(\epsilon > 0 \). If \(\mu \) is a probability measure, we say \(X_n \) converges in probability to \(X \).
• Properties of convergence

Proposition 2.9 Let \(\{X_n\} \), \(X \) be finite measurable functions. Then \(X_n \to_{a.e.} X \) if and only if for any \(\epsilon > 0 \),

\[
\mu\left(\bigcap_{n=1}^{\infty} \bigcup_{m \geq n} \{|X_m - X| \geq \epsilon\} \right) = 0.
\]

If \(\mu(\Omega) < \infty \), then \(X_n \to_{a.e.} X \) if and only if for any \(\epsilon > 0 \),

\[
\mu\left(\bigcup_{m \geq n} \{|X_m - X| \geq \epsilon\} \right) \to 0.
\]
Proof

\{\omega : X_n(\Omega) \to X(\omega)\}^c = \bigcup_{k=1}^{\infty} \bigcap_{n=1}^{\infty} \bigcup_{m\geq n} \left\{ \omega : |X_m(\omega) - X(\omega)| \geq \frac{1}{k} \right\}.

$X_n \to_{a.e.} X \Rightarrow$ the measure of the left-hand side is zero.

$\Rightarrow \bigcap_{n=1}^{\infty} \bigcup_{m\geq n} \{|X_m - X| \geq \epsilon\}$ has measure zero.

For the other direction, choose $\epsilon = 1/k$ for any k, then by countable sub-additivity,

$$\mu(\bigcup_{k=1}^{\infty} \bigcap_{n=1}^{\infty} \bigcup_{m\geq n} \left\{ \omega : |X_m(\omega) - X(\omega)| \geq \frac{1}{k} \right\}) \leq \sum_k \mu(\bigcap_{n=1}^{\infty} \bigcup_{m\geq n} \left\{ \omega : |X_m(\omega) - X(\omega)| \geq \frac{1}{k} \right\}) = 0.$$

$\Rightarrow X_n \to_{a.e.} X.$

When $\mu(\Omega) < \infty$, the latter holds by Proposition 2.2.
• Relationship between two convergence modes

Proposition 2.10 Let X_n be finite a.e.

(i) If $X_n \rightarrow_{\mu} X$, then there exists a subsequence $X_{n_k} \rightarrow_{a.e} X$.

(ii) If $\mu(\Omega) < \infty$ and $X_n \rightarrow_{a.e} X$, then $X_n \rightarrow_{\mu} X$.
Proof

(i) Find n_k

\[P(|X_{n_k} - X| \geq 2^{-k}) < 2^{-k}. \]

\[\Rightarrow \mu(\bigcup_{m \geq k} \{|X_{n_m} - X| \geq \epsilon\}) \leq \mu(\bigcup_{m \geq k} \{|X_{n_m} - X| \geq 2^{-k}\}) \leq \sum_{m \geq k} 2^{-m} \to 0. \]

\[\Rightarrow X_{n_k} \to a.e \ X. \]

(ii) is direct from the second part of Proposition 2.9.
• Examples of convergence

 - Let $X_{2^n+k} = I(x \in [k/2^n, (k+1)/2^n]), 0 \leq k < 2^n$ in the Lebesgue measure space. Then $X_n \rightarrow^\lambda 0$ but does not converge to zero almost everywhere.

 - $X_n = nI(|x| > n) \rightarrow_{a.e.} 0$ but $\lambda(|X_n| > \epsilon) \rightarrow \infty$.
• Dominated Convergence Theorem (DCT)

Theorem 2.4 If $|X_n| \leq Y$ a.e. with Y integrable, and if $X_n \to_\mu X$ (or $X_n \to_{a.e.} X$), then $\int |X_n - X| d\mu \to 0$ and $\lim \int X_n d\mu = \int X d\mu$.
Proof

Assume $X_n \to_{a.e} X$. Define $Z_n = 2Y - |X_n - X|$. $Z_n \geq 0$ and $Z_n \to 2Y$.

⇒ From the Fatou’s lemma,

$$\int 2Yd\mu \leq \liminf_n \int (2Y - |X_n - X|)d\mu.$$

⇒ $\limsup_n \int |X_n - X|d\mu \leq 0$.

If $X_n \to_{\mu} X$ and the result does not hold for some subsequence of X_n, by Proposition 2.10, there exits a further sub-sequence converging to X almost surely. However, the result holds for this further subsequence. Contradiction!
• Interchange of integral and limit or derivative

Theorem 2.5 Suppose that $X(\omega, t)$ is measurable for each $t \in (a, b)$.

(i) If $X(\omega, t)$ is a.e. continuous in t at t_0 and $|X(\omega, t)| \leq Y(\omega)$, a.e. for $|t - t_0| < \delta$ with Y integrable, then

$$\lim_{t \to t_0} \int X(\omega, t) d\mu = \int X(\omega, t_0) d\mu.$$
(ii) Suppose $\frac{\partial}{\partial t} X(\omega, t)$ exists for a.e. ω, all $t \in (a, b)$ and $|\frac{\partial}{\partial t} X(\omega, t)| \leq Y(\omega)$, a.e. for all $t \in (a, b)$ with Y integrable. Then

$$\frac{\partial}{\partial t} \int X(\omega, t) d\mu = \int \frac{\partial}{\partial t} X(\omega, t) d\mu.$$
Proof

(i) follows from the DCT and the subsequence argument.

(ii) \[\frac{\partial}{\partial t} \int X(\omega, t) d\mu = \lim_{h \to 0} \int \frac{X(\omega, t + h) - X(\omega, t)}{h} d\mu. \]

Then from the conditions and (i), such a limit can be taken within the integration.
Product of Measures
• Definition

- \(\Omega_1 \times \Omega_2 = \{(\omega_1, \omega_2) : \omega_1 \in \Omega_1, \omega_2 \in \Omega_2 \} \)
- \(\mathcal{A}_1 \times \mathcal{A}_2 = \sigma(\{A_1 \times A_2 : A_1 \in \mathcal{A}_1, A_2 \in \mathcal{A}_2 \}) \)
- \((\mu_1 \times \mu_2)(A_1 \times A_2) = \mu_1(A_1)\mu_2(A_2) \) with its extension to all sets in the \(\mathcal{A}_1 \times \mathcal{A}_2 \)
• Examples

- \((R^k = R \times \ldots \times R, \mathcal{B} \times \ldots \times \mathcal{B}, \lambda \times \ldots \times \lambda)\)

 \[\lambda \times \ldots \times \lambda \equiv \lambda^k\]

- \(\Omega = \{1, 2, 3\ldots\}\)

 \((R \times \Omega, \mathcal{B} \times 2^\Omega, \lambda \times \mu^\#)\)
Integration on the product measure space

- In calculus,
 \[\int_{\mathbb{R}^2} f(x, y) \, dx \, dy = \int_x \int_y f(x, y) \, dy \, dx = \int_y \int_x f(x, y) \, dx \, dy \]

- Do we have the same equality in the product measure space?
Theorem 2.6 (Fubini-Tonelli Theorem) Suppose that \(X : \Omega_1 \times \Omega_2 \to R \) is \(\mathcal{A}_1 \times \mathcal{A}_2 \) measurable and \(X \geq 0 \). Then

\[
\int_{\Omega_1} X(\omega_1, \omega_2) d\mu_1 \text{ is } \mathcal{A}_2 \text{ measurable,}
\]

\[
\int_{\Omega_2} X(\omega_1, \omega_2) d\mu_2 \text{ is } \mathcal{A}_1 \text{ measurable,}
\]

\[
\int_{\Omega_1 \times \Omega_2} X(\omega_1, \omega_2) d(\mu_1 \times \mu_2) = \int_{\Omega_1} \left\{ \int_{\Omega_2} X(\omega_1, \omega_2) d\mu_2 \right\} d\mu_1
\]

\[
= \int_{\Omega_2} \left\{ \int_{\Omega_1} X(\omega_1, \omega_2) d\mu_1 \right\} d\mu_2.
\]
• Conclusion from Theorem 2.6

- in general, $X = X^+ - X^-$. Then the above results hold for X^+ and X^-. Thus, if

$$\int_{\Omega_1 \times \Omega_2} |X(\omega_1, \omega_2)| d(\mu_1 \times \mu_2)$$

is finite, then the above results hold.
One example

- let $(\Omega, 2^\Omega, \mu^\#)$ be a counting measure space where $\Omega = \{1, 2, 3, \ldots\}$ and $(R, \mathcal{B}, \lambda)$ be the Lebesgue measure space

- define $f(x, y) = I(0 \leq x \leq y) \exp\{-y\}$; then

$$
\int_{\Omega \times R} f(x, y) d\{\mu^\# \times \lambda\} = \int_\Omega \{ \int_R f(x, y) d\lambda(y) \} d\mu^\#(x)
$$

$$
= \int_\Omega \exp\{-x\} d\mu^\#(x) = \sum_{n=1}^{\infty} \exp\{-n\} = 1/(e - 1).
$$
Derivative of Measures
• Motivation

 – let \((\Omega, \mathcal{A}, \mu)\) be a measurable space and let \(X\) be a non-negative measurable function on \(\Omega\)

 – a set function \(\nu\) as \(\nu(A) = \int_A X d\mu = \int I_A X d\mu\) for each \(A \in \mathcal{A}\).

 – \(\nu\) is a measure on \((\Omega, \mathcal{A})\)

 – observe \(X = d\nu/d\mu\)
• Absolute continuity

Definition 2.5 If for any $A \in \mathcal{A}$, $\mu(A) = 0$ implies that $\nu(A) = 0$, then ν is said to be *absolutely continuous* with respect to μ, and we write $\nu << \mu$. Sometimes it is also said that ν is *dominated* by μ.
• Equivalent conditions

Proposition 2.11 Suppose \(\nu(\Omega) < \infty \). Then \(\nu \ll \mu \) if and only if for any \(\epsilon > 0 \), there exists a \(\delta \) such that \(\nu(A) < \epsilon \) whenever \(\mu(A) < \delta \).
Proof

"\(\Rightarrow \)" is clear.

To prove "\(\Leftarrow \)", suppose there exists \(\epsilon \) and a set \(A_n \) such that \(\nu(A_n) > \epsilon \) and \(\mu(A_n) < n^{-2} \).

Since \(\sum_n \mu(A_n) < \infty \),
\[
\mu(\limsup_n A_n) \leq \sum_{m \geq n} \mu(A_n) \to 0.
\]

\(\Rightarrow \mu(\limsup_n A_n) = 0. \)

However, \(\nu(\limsup_n A_n) = \lim_n \nu(\bigcup_{m \geq n} A_m) \geq \limsup_n \nu(A_n) \geq \epsilon. \)
Contradiction!
• Existence and uniqueness of the derivative

Theorem 2.7 (Radon-Nikodym theorem) Let

$(\Omega, \mathcal{A}, \mu)$ be a σ-finite measure space, and let ν be a measurable on (Ω, \mathcal{A}) with $\nu \ll \mu$. Then there exists a measurable function $X \geq 0$ such that $\nu(A) = \int_A X \, d\mu$ for all $A \in \mathcal{A}$. X is unique in the sense that if another measurable function Y also satisfies the equation, then $X = Y$, a.e.
• Transformation of integration using derivative

Proposition 2.13 Suppose ν and μ are σ-finite measure defined on a measure space (Ω, \mathcal{A}) with $\nu \ll \mu$, and suppose Z is a measurable function such that $\int Z d\nu$ is well defined. Then for any $A \in \mathcal{A}$,

$$\int_A Z d\nu = \int_A Z \frac{d\nu}{d\mu} d\mu.$$
Proof

(i) If \(Z = I_B \) where \(B \in \mathcal{A} \), then
\[
\int_A Z d\nu = \nu(A \cap B) = \int_{A \cap B} \frac{d\nu}{d\mu} d\mu = \int_A I_B \frac{d\nu}{d\mu} d\mu.
\]

(ii) If \(Z \geq 0 \), find a sequence of simple function \(Z_n \) increasing to \(Z \).
For \(Z_n \), \(\int_A Z_n d\nu = \int_A Z_n \frac{d\nu}{d\mu} d\mu \). Take limits on both sides and apply the MCT.

(iii) For any \(Z \), write \(Z = Z^+ - Z^- \).
\[
\int Z d\nu = \int Z^+ d\nu - \int Z^- d\nu = \int Z^+ \frac{d\nu}{d\mu} d\mu - \int Z^- \frac{d\nu}{d\mu} d\mu = \int Z \frac{d\nu}{d\mu} d\mu.
\]
Induced Measure
Definition

- let X be a measurable function defined on $(\Omega, \mathcal{A}, \mu)$.
- for any $B \in \mathcal{B}$, define $\mu_X(B) = \mu(X^{-1}(B))$
- μ_X is called a measure induced by X: $(\mathbb{R}, \mathcal{B}, \mu_X)$.
• **Density function of** X

 – $(\mathbb{R}, \mathcal{B}, \nu)$ is another measure space (often the counting measure or the Lebesgue measure)

 – suppose μ_X is dominated by ν with the derivative

 – $f \equiv d\mu_X/d\nu$ is called the *density of X with respect to the dominating measure ν*
• Comparison with usual density function
 – $(\Omega, \mathcal{A}, \mu) = (\Omega, \mathcal{A}, P)$ is a probability space
 – X is a random variable
 – if ν is the counting measure, $f(x)$ is in fact the probability mass function of X
 – if ν is the Lebesgue measure, $f(x)$ is the probability density function of X
• Integration using density

\[
\int_{\Omega} g(X(\omega))d\mu(\omega) = \int_{R} g(x)d\mu_{X}(x) = \int_{R} g(x)f(x)d\nu(x)
\]

- the integration of \(g(X) \) on the original measure space \(\Omega \) can be transformed as the integration of \(g(x) \) on \(R \) with respect to the induced-measure \(\mu_{X} \) and can be further transformed as the integration of \(g(x)f(x) \) with respect to the dominating measure \(\nu \)
• Interpretation in probability space

 – in probability space, \(E[g(X)] = \int_R g(x)f(x)d\nu(x) \)

 – any expectations regarding random variable \(X \) can be computed via its probability mass function (\(\nu \) is counting measure) or density function (\(\nu \) is Lebesgue measure)

 – in statistical calculation, we do NOT need to specify whatever probability measure space \(X \) is defined on, while solely rely on \(f(x) \) and \(\nu \).
CHAPTER 2 BASIC MEASURE THEORY

Probability Measure
• A few important reminders

 – a probability measure space \((\Omega, \mathcal{A}, P)\) is a measure space with \(P(\Omega) = 1\);

 – random variable (or random vector in multi-dimensional real space) \(X\) is any measurable function;

 – integration of \(X\) is equivalent to the expectation;
the density or the mass function of X is the Radon-Nikodym derivative of the X-induced measure with respect to the Lebesgue measure or the counting measure in real space;

using the mass function or density function, statisticians unconsciously ignore the underlying probability measure space (Ω, \mathcal{A}, P).

Cumulative distribution function revisited

- $F(x)$ is a nondecreasing function with $F(-\infty) = 0$ and $F(\infty) = 1$;

- $F(x)$ is right-continuous;

- λ_F, the Lebesgue-Stieljes measure generated by F is exactly the same measure as the one induced by X, i.e., P_X.
Conditional Probability
• A simple motivation

- the conditional probability of an event A given another event B has two possibilities:

 $P(A|B) = P(A \cap B)/P(B)$

 $P(A|B^c) = P(A \cap B^c)/P(B^c)$;

- equivalently, A given the event B is a measurable function assigned to the σ-field $\{\emptyset, B, B^c, \Omega\}$,

\[P(A|B)I_B(\omega) + P(A|B^c)I_{B^c}(\omega). \]
• Definition of conditional probability

An event A given a sub-σ-field \mathcal{N}, $P(A|\mathcal{N})$

- it is a measurable and integrable function on (Ω, \mathcal{N});
- for any $G \in \mathcal{N}$,

$$\int_G P(A|\mathcal{N})dP = P(A \cap G).$$
Existence and Uniqueness of Conditional Probability Function

Theorem 2.8 The measurable function $P(A|\mathcal{N})$ exists and is unique in the sense that any two functions satisfying the definition are the same almost surely.
Proof

In \((\Omega, \mathfrak{F}, P)\), define a set function \(\nu\) on \(\mathfrak{F}\) such that
\[\nu(G) = P(A \cap G)\]
for any \(G \in \mathfrak{F}\).

\[\Rightarrow \nu\] is a measure and \(P(G) = 0\) implies that \(\nu(G) = 0 \Rightarrow \nu \prec \prec P\).

\[\Rightarrow\] By the Radon-Nikodym theorem, there exits a \(\mathfrak{F}\)-measurable function \(X\) such that \(\nu(G) = \int_G X dP\).
\[\Rightarrow X\] satisfies the properties (i) and (ii).

Suppose \(X\) and \(Y\) both are measurable in \(\mathfrak{F}\) and \(\int_G X dP = \int_G Y dP\) for any \(G \in \mathfrak{F}\). Choose \(G = \{X - Y \geq 0\}\) and \(G = \{X - Y < 0\}\) \(\Rightarrow \int |X - Y| dP = 0 \Rightarrow X = Y, \ a.s.\)
• Properties of conditional probability

Theorem 2.9 \(P(\emptyset | \mathcal{F}) = 0, P(\Omega | \mathcal{F}) = 1 \) a.e. and

\[
0 \leq P(A | \mathcal{F}) \leq 1
\]

for each \(A \in \mathcal{A} \). if \(A_1, A_2, \ldots \) is finite or countable sequence of disjoint sets in \(\mathcal{A} \), then

\[
P(\bigcup_n A_n | \mathcal{F}) = \sum_n P(A_n | \mathcal{F}).
\]
Conditional Expectation
• Definition

X given \mathcal{N}, denoted $E[X|\mathcal{N}]$

- $E[X|\mathcal{N}]$ is measurable in \mathcal{N} and integrable;
- for any $G \in \mathcal{N}$, $\int_G E[X|\mathcal{N}]dP = \int_G XdP$, equivalently;
 $E\left[E[X|\mathcal{N}]I_G\right] = E[XI_G]$, a.e.
- The existence and the uniqueness of $E[X|\mathcal{N}]$ can be shown similar to Theorem 2.8.
• Properties of conditional expectation

Theorem 2.10 Suppose X, Y, X_n are integrable.

(i) If $X = a$ a.s., then $E[X|\mathcal{N}] = a$.

(ii) $E[aX + bY|\mathcal{N}] = aE[X|\mathcal{N}] + b[Y|\mathcal{N}]$.

(iii) If $X \leq Y$ a.s., then $E[X|\mathcal{N}] \leq E[Y|\mathcal{N}]$.

(iv) $|E[X|\mathcal{N}]| \leq E[|X||\mathcal{N}]$.

(v) If $\lim_{n} X_n = X$ a.s., $|X_n| \leq Y$ and Y is integrable, then $\lim_{n} E[X_n|\mathcal{N}] = E[X|\mathcal{N}]$.

(vi) If X is measurable in \mathcal{N}, $E[XY|\mathcal{N}] =XE[Y|\mathcal{N}]$. (vii)

For two sub-σ fields \mathcal{N}_1 and \mathcal{N}_2 such that $\mathcal{N}_1 \subset \mathcal{N}_2$,

$$E \left[E[X|\mathcal{N}_2]|\mathcal{N}_1 \right] = E[X|\mathcal{N}_1].$$

(viii) $P(A|\mathcal{N}) = E[I_A|\mathcal{N}]$.
Proof

(i)-(iv) be shown directly using the definition.

To prove (v), consider $Z_n = \sup_{m \geq n}|X_m - X|$. Z_n decreases to 0.
$\Rightarrow |E[X_n|\mathbb{N}] - E[X|\mathbb{N}]| \leq E[Z_n|\mathbb{N}]$. $E[Z_n|\mathbb{N}]$ decreases to a limit $Z \geq 0$.
Remains to show $Z = 0$ a.s. Note $E[Z_n|\mathbb{N}] \leq E[2Y|\mathbb{N}] \Rightarrow$ by the DCT, $E[Z] = \int E[Z|\mathbb{N}]dP \leq \int E[Z_n|\mathbb{N}]dP \to 0. \Rightarrow Z = 0$ a.s.

For (vii), for any $G \in \mathbb{N}_1 \subset \mathbb{N}_2$,

$$\int_G E[X|\mathbb{N}_2]dP = \int_G XdP = \int_G E[X|\mathbb{N}_1]dP.$$

(viii) is clear from the definition of the conditional probability.
To see (vi) holds, consider simple function first, \(X = \sum_i x_i I_{B_i} \) where \(B_i \) are disjoint set in \(\mathcal{N} \). For any \(G \in \mathcal{N} \),

\[
\int_G E[XY|\mathcal{N}]dP = \int_G XYdP = \sum_i x_i \int_{G \cap B_i} YdP
\]

\[
= \sum_i x_i \int_{G \cap B_i} E[Y|\mathcal{N}]dP = \int_G XE[Y|\mathcal{N}]dP.
\]

\[\Rightarrow E[XY|\mathcal{N}] = XE[Y|\mathcal{N}].\]

For any \(X \), a sequence of simple functions \(X_n \) converges to \(X \) and \(|X_n| \leq |X| \). Then

\[
\int_G X_nYdP = \int_G X_nE[Y|\mathcal{N}]dP.
\]

Note that \(|X_nE[Y|\mathcal{N}]| = |E[X_nY|\mathcal{N}]| \leq E[|XY| \mathcal{N}] \). From the DCT,

\[
\int_G XYdP = \int_G XE[Y|\mathcal{N}]dP.
\]
Relation to classical conditional density

- $\mathcal{N} = \sigma(Y)$: the σ-field generated by the class
 \[\left\{ \{ Y \leq y \} : y \in \mathbb{R} \right\} \Rightarrow P(X \in B|\mathcal{N}) = g(B, Y) \]

- $\int_{Y \leq y_0} P(X \in B|\mathcal{N})dP = \int I(y \leq y_0)g(B, y)f_Y(y)dy = P(X \in B, Y \leq y_0)$
 \[= \int I(y \leq y_0) \int_B f(x, y)dxdy. \]

- $g(B, y)f_Y(y) = \int_B f(x, y)dx \Rightarrow P(X \in B|\mathcal{N}) = \int_B f(x|y)dx$.

- the conditional density of $X|Y = y$ is the density function of the conditional probability measure
 $P(X \in \cdot |\mathcal{N})$ with respect to the Lebesgue measure.
Relation to classical conditional expectation

- \(E[X|\mathcal{F}] = g(Y) \) for some measurable function \(g(\cdot) \)

- \(\int I(Y \leq y_0) E[X|\mathcal{F}] dP = \int I(y \leq y_0) g(y) f_Y(y) dy \)

 \[= E[XI(Y \leq y_0)] = \int I(y \leq y_0) x f(x, y) dx dy \]

- \(g(y) = \int x f(x, y) dx / f_Y(y) \)

- \(E[X|\mathcal{F}] \) is the same as the classical conditional expectation of \(X \) given \(Y = y \)
READING MATERIALS: Lehmann and Casella, Sections 1.2 and 1.3, Lehmann *Testing Statistical Hypotheses*, Chapter 2 (Optional)